skip to main content


Title: Uniqueness of Power Flow Solutions Using Monotonicity and Network Topology
This article establishes sufficient conditions for the uniqueness of AC power flow solutions via the monotonic relationship between real power flow and the phase angle difference. More specifically, we prove that the P-Θ power flow problem has at most one solution for any acyclic or GSP graph. In addition, for arbitrary cyclic power networks, we show that multiple distinct solutions cannot exist under the assumption that angle differences across the lines are bounded by some limit related to the maximal girth of the network. In these cases, a vector of voltage phase angles can be uniquely determined (up to an absolute phase shift) given a vector of real power injections within the realizable range. The implication of this result for the classical power flow analysis is that under the conditions specified above, the problem has a unique physically realizable solution if the phasor voltage magnitudes are fixed. We also introduce a series-parallel operator and show that this operator obtains a reduced and easier-to-analyze model for the power system without changing the uniqueness of power flow solutions.  more » « less
Award ID(s):
1808859
NSF-PAR ID:
10282185
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE transactions on control of network systems
ISSN:
2325-5870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper develops a finite approximation approach to find a non-smooth solution of an integral equation of the second kind. The equation solutions with non-smooth kernel having a non-smooth solution have never been studied before. Such equations arise frequently when modeling stochastic systems. We construct a Banach space of (right-continuous) distribution functions and reformulate the problem into an operator equation. We provide general necessary and sufficient conditions that allow us to show convergence of the approximation approach developed in this paper. We then provide two specific choices of approximation sequences and show that the properties of these sequences are sufficient to generate approximate equation solutions that converge to the true solution assuming solution uniqueness and some additional mild regularity conditions. Our analysis is performed under the supremum norm, allowing wider applicability of our results. Worst-case error bounds are also available from solving a linear program. We demonstrate the viability and computational performance of our approach by constructing three examples. The solution of the first example can be constructed manually but demonstrates the correctness and convergence of our approach. The second application example involves stationary distribution equations of a stochastic model and demonstrates the dramatic improvement our approach provides over the use of computer simulation. The third example solves a problem involving an everywhere nondifferentiable function for which no closed-form solution is available. 
    more » « less
  2. When a plane shock hits a two-dimensional wedge head on, it experiences a reflection-diffraction process, and then a self-similar reflected shock moves outward as the original shock moves forward in time. The experimental, computational, and asymptotic analysis has indicated that various patterns occur, including regular reflection and Mach reflection. The von Neumann's conjectures on the transition from regular to Mach reflection involve the existence, uniqueness, and stability of regular shock reflection-diffraction configurations, generated by concave cornered wedges for compressible flow. In this paper, we discuss some recent developments in the study of the von Neumann's conjectures. More specifically, we discuss the uniqueness and stability of regular shock reflection-diffraction configurations governed by the potential flow equation in an appropriate class of solutions. We first show that the transonic shocks in the global solutions obtained in Chen-Feldman [19] are convex. Then we establish the uniqueness of global shock reflection-diffraction configurations with convex transonic shocks for any wedge angle larger than the detachment angle or the critical angle. Moreover, the solution under consideration is stable with respect to the wedge angle. Our approach also provides an alternative way of proving the existence of the admissible solutions established first in [19]. 
    more » « less
  3. Power flow computations are fundamental to many power system studies. Obtaining a converged power flow case is not a trivial task especially in large power grids due to the non-linear nature of the power flow equations. One key challenge is that the widely used Newton based power flow methods are sensitive to the initial voltage magnitude and angle estimates, and a bad initial estimate would lead to non-convergence. This paper addresses this challenge by developing a random-forest (RF) machine learning model to provide better initial voltage magnitude and angle estimates towards achieving power flow convergence. This method was implemented on a real ERCOT 6102 bus system under various operating conditions. By providing better Newton-Raphson initialization, the RF model precipitated the solution of 2,106 cases out of 3,899 non-converging dispatches. These cases could not be solved from flat start or by initialization with the voltage solution of a reference case. Results obtained from the RF initializer performed better when compared with DC power flow initialization, Linear regression, and Decision Trees. 
    more » « less
  4. We study the focusing NLS equation in $R\mathbb{R}^N$ in the mass-supercritical and energy-subcritical (or intercritical ) regime, with $H^1$ data at the mass-energy threshold $\mathcal{ME}(u_0)=\mathcal{ME}(Q)$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$-critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $Q^\pm$, besides the standing wave $e^{it}Q$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blow-up occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations. 
    more » « less
  5. null (Ed.)
    Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing technique, which has emerged as a high-resolution method for the fabrication of a broad spectrum of electronic devices. Despite the advantages and critical applications of AJP in the printed-electronics industry, AJP process is intrinsically unstable, complex, and prone to unexpected gradual drifts, which adversely affect the morphology and consequently the functional performance of a printed electronic device. Therefore, in situ process monitoring and control in AJP is an inevitable need. In this respect, in addition to experimental characterization of the AJP process, physical models would be required to explain the underlying aerodynamic phenomena in AJP. The goal of this research work is to establish a physics-based computational platform for prediction of aerosol flow regimes and ultimately, physics-driven control of the AJP process. In pursuit of this goal, the objective is to forward a three-dimensional (3D) compressible, turbulent, multiphase computational fluid dynamics (CFD) model to investigate the aerodynamics behind: (i) aerosol generation, (ii) aerosol transport, and (iii) aerosol deposition on a moving free surface in the AJP process. The complex geometries of the deposition head as well as the pneumatic atomizer were modeled in the ansys-fluent environment, based on patented designs in addition to accurate measurements, obtained from 3D X-ray micro-computed tomography (μ-CT) imaging. The entire volume of the constructed geometries was subsequently meshed using a mixture of smooth and soft quadrilateral elements, with consideration of layers of inflation to obtain an accurate solution near the walls. A combined approach, based on the density-based and pressure-based Navier–Stokes formation, was adopted to obtain steady-state solutions and to bring the conservation imbalances below a specified linearization tolerance (i.e., 10−6). Turbulence was modeled using the realizable k-ε viscous model with scalable wall functions. A coupled two-phase flow model was, in addition, set up to track a large number of injected particles. The boundary conditions of the CFD model were defined based on experimental sensor data, recorded from the AJP control system. The accuracy of the model was validated using a factorial experiment, composed of AJ-deposition of a silver nanoparticle ink on a polyimide substrate. The outcomes of this study pave the way for the implementation of physics-driven in situ monitoring and control of AJP. 
    more » « less