skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ACOPF for three‐phase four‐conductor distribution systems: semidefinite programming based relaxation with variable reduction and feasible solution recovery
Emerging distribution systems with a proliferation of distributed energy resources are facing with new challenges, such as voltage collapse and power flow congestion in unsymmetrical network configurations. As a fundamental tool that could help quantify these new challenges and further mitigate their impacts on the secure and economic operation of distribution systems, effective AC optimal power flow (ACOPF) models and solution approaches are in urgent need. This study focuses on ACOPF of three‐phase four‐conductor configured distribution systems, in which neutral conductors and ground resistances are modelled explicitly to reflect practical situation. In addition, by leveraging the Kirchhoff's current law (KCL) theorem and the effect of zero injections, voltage variables of neutrals and zero‐injection phases can be effectively eliminated. The ACOPF problem is formulated as a convex semidefinite programming (SDP) relaxation model in complex domain. In recognising possible solution inexactness of SDP relaxation model, a Karush–Kuhn–Tucker condition based process is further proposed to effectively recover feasible solutions to the original ACOPF problem by calculating a set of computational‐inexpensive non‐linear equations. Numerical studies on a modified IEEE 123‐bus system show the effectiveness of the proposed SDP relaxation model with variable reductions and the feasible solution recovery process for three‐phase four‐conductor configured distribution systems.  more » « less
Award ID(s):
1952683
PAR ID:
10570694
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1049
Date Published:
Journal Name:
IET Generation, Transmission & Distribution
Volume:
13
Issue:
2
ISSN:
1751-8687
Format(s):
Medium: X Size: p. 266-276
Size(s):
p. 266-276
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a three-phase iterative direct current optimal power flow (DCOPF) algorithm with fictitious nodal demand. Power losses and realistic distribution system operating constraints such as line flow limits and phase imbalance limits are carefully modeled in the DCOPF formulation. The definition of locational marginal prices (LMPs) is extended to three-phase distribution systems. The three-phase LMP decomposition is derived based on the Lagrangian function. The proposed algorithm is implemented in an IEEE test case and compared with three-phase alternating current optimal power flow (ACOPF) algorithm. The simulation results show that the proposed DCOPF algorithm is effective in coordinating the operations of distributed energy resources (DERs) and managing phase imbalance and thermal overloading. The proposed iterative three-phase DCOPF algorithm provides not only a computationally efficient solution but also a good approximation to the ACOPF solution. 
    more » « less
  2. Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described. 
    more » « less
  3. We propose an enhanced semidefinite program (SDP) relaxation to enable the tight and efficient verification of neural networks (NNs). The tightness improvement is achieved by introducing a nonlinear constraint to existing SDP relaxations previously proposed for NN verification. The efficiency of the proposal stems from the iterative nature of the proposed algorithm in that it solves the resulting non-convex SDP by recursively solving auxiliary convex layer-based SDP problems. We show formally that the solution generated by our algorithm is tighter than state-of-the-art SDP-based solutions for the problem. We also show that the solution sequence converges to the optimal solution of the non-convex enhanced SDP relaxation. The experimental results on standard benchmarks in the area show that our algorithm achieves the state-of-the-art performance whilst maintaining an acceptable computational cost. 
    more » « less
  4. null (Ed.)
    This paper develops an ensemble learning-based linearization approach for power flow with reactive power modeled, where the polynomial regression (PR) is first used as a basic learner to capture the linear relationships between the bus voltages as the independent variables and the active or reactive power as the dependent variable in rectangular coordinates. Then, gradient boosting (GB) and bagging as ensemble learning methods are introduced to combine all basic learners to boost the model performance. The inferred linear power flow model is applied to solve the well-known optimal power flow (OPF) problem. The simulation results on IEEE standard power systems indicate that (1) ensemble learning methods can significantly improve the efficiency of PR, and GB works better than bagging; (2) as for solving OPF, the data-driven model outperforms the DC model and the SDP relaxation in both accuracy, and computational efficiency. 
    more » « less
  5. null (Ed.)
    This article establishes sufficient conditions for the uniqueness of AC power flow solutions via the monotonic relationship between real power flow and the phase angle difference. More specifically, we prove that the P-Θ power flow problem has at most one solution for any acyclic or GSP graph. In addition, for arbitrary cyclic power networks, we show that multiple distinct solutions cannot exist under the assumption that angle differences across the lines are bounded by some limit related to the maximal girth of the network. In these cases, a vector of voltage phase angles can be uniquely determined (up to an absolute phase shift) given a vector of real power injections within the realizable range. The implication of this result for the classical power flow analysis is that under the conditions specified above, the problem has a unique physically realizable solution if the phasor voltage magnitudes are fixed. We also introduce a series-parallel operator and show that this operator obtains a reduced and easier-to-analyze model for the power system without changing the uniqueness of power flow solutions. 
    more » « less