skip to main content


Title: Assessing and applying students’ understanding of the scientific practices and crosscutting concepts
The Model-Evidence-Link (MEL) and build-a MEL (baMEL) tasks are designed to engage students in scientific practices, including argumentation and critical thinking. We designed a rubric for teachers to assess the various practices and skills students use while completing a MEL or baMEL, based on several NGSS Science and Engineering Practices (SEPs) and Cross Cutting Concepts (CCCs). When applying this rubric, we suggest that teachers only focus on student performance with respect to one SEP or CCC each time they implement a MEL or baMEL. We also developed a transfer task to ascertain how well students are able to perform MEL-related thinking skills, such as identifying a scientific model and alternative (but non-scientific) models, lines of evidence, and plausibility of knowledge claims, in a grade appropriate scientific journal article. The near-transfer activity can help teachers gauge how well students apply their MEL/baMEL skills and can improve students’ scientific literacy.  more » « less
Award ID(s):
2027376
NSF-PAR ID:
10282187
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Earth scientist
Volume:
36
Issue:
3
ISSN:
1045-4772
Page Range / eLocation ID:
27-30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    It is a pleasure to present the second special issue of The Earth Scientist sponsored by the MEL Project team (https://serc.carleton.edu/mel/index.html)! The Model-Evidence Link (MEL) and MEL2 projects have been sponsored by the National Science Foundation (Grant Nos. 1316057, 1721041, and 2027376) to Temple University and the University of Maryland, in partnership with the University of North Georgia, TERC, and the Planetary Science Institute. In 2016 we shared with you the four MEL diagram activities, covering the topics of climate change, the formation of the Moon, fracking and earthquakes, and wetlands use, as well as a rubric for assessment. This issue brings to you our four new build-a-MEL activities on the origins of the Universe, fossils and Earth’s past, freshwater resources, and extreme weather. Additionally, there are articles about a new NGSS-aligned rubric and transfer task to help students apply their new skills in other situations and about teaching with MEL and build-a-MEL activities. Our goals with all of these activities are to help students learn Earth science content by engaging in scientific practices, notably the evaluation of alternative explanatory models (by looking at the connections between lines of evidence and the competing models) and argumentation. The team has tested these activities in multiple middle and high school classrooms. Our research has shown the activities to be effective in learning both content and skills, and our partner teachers report that students enjoy the activities. These activities are freely available for teachers to use. We hope that you and your students will also find them to be effective and enjoyable approaches to learning about complex and sometimes controversial socioscientific issues within Earth Science. 
    more » « less
  2. Abstract

    Flourishing in today's global society requires citizens that are both intelligent consumers and producers of scientific understanding. Indeed, the modern world is facing ever‐more complex problems that require innovative ways of thinking about, around, and with science. As numerous educational stakeholders have suggested, such skills and abilities are not innate and must, therefore, be taught (e.g., McNeill & Krajcik,Journal of Research in Science Teaching,45(1), 53–78. 2008). However, such instruction requires a fundamental shift in science pedagogy so as to foster knowledge and practices like deep, conceptual understanding, model‐based reasoning, and oral and written argumentation where scientific evidence is evaluated (National Research Council,Next Generation Science Standards: For States, by States, Washington, DC: The National Academies Press, 2013). The purpose of our quasi‐experimental study was to examine the effectiveness of Quality Talk Science, a professional development model and intervention, in fostering changes in teachers’ and students’ discourse practices as well as their conceptual understanding and scientific argumentation. Findings revealed treatment teachers’ and students’ discourse practices better reflected critical‐analytic thinking and argumentation at posttest relative to comparison classrooms. Similarly, at posttest treatment students produced stronger written scientific arguments than comparison students. Students’ growth in conceptual understanding was nonsignificant. These findings suggest discourse interventions such as Quality Talk Science can improve high‐school students’ ability to engage in scientific argumentation.

     
    more » « less
  3. Students often encounter alternative explanations about astronomical phenomena. However, inconsistent with astronomers’ practices, students may not be scientific, critical, and evaluative when comparing alternatives. Instructional scaffolds, such as the Model-Evidence Link (MEL) diagram, where students weigh connections between lines of evidence and alternative explanations, may help facilitate students’ scientific evaluation and deepen their learning about astronomy. Our research team has developed two forms of the MEL: (a) the preconstructed MEL (pcMEL), where students are given four lines of evidence and two alternative explanatory models about the formation of Earth’s Moon and (b) the build-a-MEL (baMEL), where students construct their own diagrams by choosing four lines scientific evidence out of eight choices and two alternative explanatory model out of three choices, about the origins of the Universe. The present study compared the more autonomy-supportive baMEL to the less autonomy-supportive pcMEL and found that both scaffolds shifted high school student and preservice teacher participants’ plausibility judgments toward a more scientific stance and increased their knowledge about the topics. Additional analyses revealed that the baMEL resulted in deeper evaluations and had stronger relations between levels of evaluation and post-instructional plausibility judgements and knowledge compared to the pcMEL. This present study, focused on astronomical topics, supports our team’s earlier research that scaffolds such as the MELs in combination with more autonomy-supportive classrooms may be one way to deepen students’ scientific thinking and increase their knowledge of complex scientific phenomena.

     
    more » « less
  4. Abstract

    This paper shares findings from a teacher designed physics and computing unit that engaged students in learning physics and computing concurrently thru inquiry. Using scientific inquiry skills and practices, students were tasked with assessing the validity of local rollercoaster g-force ratings as posted to the public. Students used computational electronic textile circuits (e-textiles) to engage in “myth busting” amusement park g-force ratings. In doing so, students engaged computing and computational thinking skills in service to answering their scientific inquiry. Findings from this study indicate that physics classes are ideal spaces for engaging in computing’s Big Ideas as laid out by Grover and Pea (Educational Researcher 42, 38–43, 2013) as well as the pillars of computational thinking (Wing, Communications of the ACM 49, 33–35, 2006). However, essential to this dual engagement is a need for computing content to act in service to the better acquisition of physics content within the physics classroom space. Findings indicate that the teachers’ use of e-textiles to integrate physics and computing broadened and deepened student learning by providing affordances for computational thinking within the structure of physical science inquiry.

     
    more » « less
  5. Systems thinking is a skill that enables students to grapple with complex problems, often to which there is no clear problem definition or solution, there are many stakeholders, and there are many systems involved (e.g. sociotechnical or socioecological systems). Fostering the development of systems thinking skills is crucial as the problems students encounter in their lives, and in formal and informal educational settings, are increasingly complex. Ongoing research points to the need for more domain-general tools to assess systems thinking in a variety of K-12 settings. Many existing tools or methods used to assess systems thinking in K-12 are often domain specific (e.g. the water cycle in environmental science) and do not always transfer well to more complex problems across content areas. Furthermore, grounding the development of systems thinking skills in the locally relevant contexts that inform and affect students' day-to-day lives also offers the opportunity for students to engage in problems they find interesting and in which they may connect more deeply. This work-in-progress paper presents the development of a general tool informed by existing research in systems thinking and pedagogical practices in K-12 settings. The initial tool development is based on an existing published tool that has been used in undergraduate settings that challenges students to consider an ill-structured problem based on a real world scenario, in which a rubric was defined and applied to measure different systems thinking competencies. The existing tool measures students' ability to identify various contextual and technical aspects of a problem, to identify various stakeholders and stakeholder needs, and to identify short-term goals, long-term goals, and unintended consequences of potential solutions. Knowledge and experience from the development of this tool will be used to pilot an assessment with K-12 students to measure their systems thinking skills in problems that are relevant to them and their experiences. 
    more » « less