Plants have evolved with complex sensory systems to recognize signals from multiple environmental conditions. A light signal is one of the most important environmental factors that regulates not only photomorphogenesis but also the developmental strategy of plants throughout their life cycle. The molecular mechanisms of the light signaling modules and the interactions between light and other environmental signals have been studied extensively. However, to enhance plant growth, particularly in crop production, we need to gain a deeper understanding of how light regulates plant development within gene regulatory networks (GRNs). Understanding GRNs is important to identify not only the novel genes and transcription factors in light signaling pathways but also the factors that connect light signaling and other environmental signals. Weighted gene co-expression network analysis (WGCNA) has been used to study GRN. We applied WGCNA to 58 RNA-seq samples of wild-type Arabidopsis grown under different light treatments and built the gene co-expression networks. We identified 14 different modules that are significantly associated with different light treatments. Among them, the honeydew1 and ivory display significant association with the dark-grown seedlings. Many hub genes identified from these modules are significantly enriched in light responses, including responses to red, far-red, blue light, light stimulus, auxin responses, and photosynthesis. Although we found many known transcription factors in these modules, we also identified several unknown genes and transcription factors that are significantly associated with the honeydew1 module and highly differentially expressed between dark and light conditions. To examine whether the hub genes in the honeydew1 module play a role in light signaling, we isolated mutants in selected hub genes and measured hypocotyl lengths under dark, red, and far-red light conditions. These assays showed that four hub genes are involved in regulating light signaling pathways. This study provides a new approach to identifying novel genes in GRNs underlying light responses in Arabidopsis.
more »
« less
The Role of Core and Variable Gene Regulatory Network Modules in Tooth Development and Evolution
Synopsis Among the developmental processes that have been proposed to influence the direction of evolution, the modular organization of developmental gene regulatory networks (GRNs) has shown particular promise. In theory, GRNs have core modules comprised of essential, conserved circuits of genes, and sub-modules of downstream, secondary circuits of genes that are more susceptible to variation. While this idea has received considerable interest as of late, the field of evo-devo lacks the experimental systems needed to rigorously evaluate this hypothesis. Here, we introduce an experimental system, the vertebrate tooth, that has great potential as a model for testing this hypothesis. Tooth development and its associated GRN have been well studied and modeled in both model and non-model organisms. We propose that the existence of modules within the tooth GRN explains both the conservation of developmental mechanisms and the extraordinary diversity of teeth among vertebrates. Based on experimental data, we hypothesize that there is a conserved core module of genes that is absolutely necessary to ensure tooth or cusp initiation and development. In regard to tooth shape variation between species, we suggest that more relaxed sub-modules activated at later steps of tooth development, for example, during the morphogenesis of the tooth and its cusps, control the different axes of tooth morphological variation.
more »
« less
- PAR ID:
- 10282222
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Cyanobacteria are prokaryotes capable of oxygenic photosynthesis, and frequently, nitrogen fixation as well. As a result, they contribute substantially to global primary production and nitrogen cycles. Furthermore, the multicellular filamentous cyanobacteria in taxonomic subsections IV and V are developmentally complex, exhibiting an array of differentiated cell types and filaments, including motile hormogonia, making them valuable model organisms for studying development. To investigate the role of sigma factors in the gene regulatory network (GRN) controlling hormogonium development, a combination of genetic, immunological, and time-resolved transcriptomic analyses were conducted in the model filamentous cyanobacterium Nostoc punctiforme , which, unlike other common model cyanobacteria, retains the developmental complexity of field isolates. The results support a model where the hormogonium GRN is driven by a hierarchal sigma factor cascade, with sigJ activating the expression of both sigC and sigF, as well as a substantial portion of additional hormogonium-specific genes, including those driving changes to cellular architecture. In turn, sigC regulates smaller subsets of genes for several processes, plays a dominant role in promoting reductive cell division, and may also both positively and negatively regulate sigJ to reinforce the developmental program and coordinate the timing of gene expression, respectively. In contrast, the sigF regulon is extremely limited. Among genes with characterized roles in hormogonium development, only pilA shows stringent sigF dependence. For sigJ -dependent genes, a putative consensus promoter was also identified, consisting primarily of a highly conserved extended −10 region, here designated a J-Box, which is widely distributed among diverse members of the cyanobacterial lineage. IMPORTANCE Cyanobacteria are integral to global carbon and nitrogen cycles, and their metabolic capacity coupled with their ease of genetic manipulation make them attractive platforms for applications such as biomaterial and biofertilizer production. Achieving these goals will likely require a detailed understanding and precise rewiring of these organisms’ GRNs. The complex phenotypic plasticity of filamentous cyanobacteria has also made them valuable models of prokaryotic development. However, current research has been limited by focusing primarily on a handful of model strains which fail to reflect the phenotypes of field counterparts, potentially limiting biotechnological advances and a more comprehensive understanding of developmental complexity. Here, using Nostoc punctiforme , a model filamentous cyanobacterium that retains the developmental range of wild isolates, we define previously unknown definitive roles for a trio of sigma factors during hormogonium development. These findings substantially advance our understanding of cyanobacterial development and gene regulation and could be leveraged for future applications.more » « less
-
Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain—the gene regulatory network (GRN)—that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization andcis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.more » « less
-
Teeth have been a prominent feature of most vertebrates for 400 million years, and the core regulatory network underlying embryonic tooth formation is deeply conserved. In frogs, however, odontogenesis is delayed, occurring instead during the postembryonic metamorphosis and resulting in teeth that are restricted to the upper jaw and palate. Developmental-genetic mechanisms that underlie tooth formation in frogs are poorly understood. We assessed if the genes underlying odontogenic competence are conserved in the late-forming teeth of frogs; if unique keratinized mouthparts, which function as an alternative feeding tool in anuran larvae, impede tooth induction; and if transient tooth rudiments form in the anuran mandible. We demonstrate that the induction of tooth development is conserved in the frog upper jaw, which displays odontogenic band expression patterns comparable to those of other vertebrates. There is, however, no evidence of tooth development initiating in the mandible. Adult teeth emerge before larval mouthparts degenerate, but their location may be spatially constrained by keratin. Gene expression patterns of keratinized mouthparts and teeth overlap. We hypothesize that the novel mouthparts of tadpoles, which we characterize as ectodermal appendages, may have originated by partially co-opting the developmental program that typically mediates development of true teeth.more » « less
-
Abstract The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in understanding the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1 , the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions.more » « less
An official website of the United States government

