skip to main content


Title: Evaluation of boundary-layer and urban-canopy parameterizations for simulating wind in Miami during Hurricane Irma (2017)
Abstract The simulated winds within the urban canopy of landfalling tropical cyclones are sensitive to the representation of the planetary-boundary and urban-canopy layers in numerical weather prediction models. In order to assess the sub-grid-scale parameterizations of these layers, mesoscale model simulations were executed and evaluated against near-surface observations as the outer wind field of Hurricane Irma (2017) interacted with the built-up region from downtown Miami northward to West Palm Beach. Four model simulations were examined, comprised of two different planetary boundary layer (PBL) parameterizations (a local closure scheme with turbulent kinetic energy prediction and a nonlocal closure scheme) and two different urban canopy models (UCMs) [a zeroth order bulk scheme and a multilayer Building Effect Parameterization (BEP) that mimics the three-dimensionality of buildings]. Overall, the simulated urban canopy winds were weakly sensitive to the PBL scheme and strongly sensitive to the UCM. The bulk simulations compared most favorably to an analyzed wind swath in the urban environment, while the BEP simulations had larger negative biases in the same region. There is uncertainty in magnitude of the urban environment biases due to the lack of many urban sheltered measurements in the wind swath analysis. Biases in the rural environment were similar among the bulk and BEP simulations. An improved comparison with the analyzed wind swath in the urban region was obtained by reducing the drag coefficient in BEP in one of the PBL schemes. The usefulness of BEP was demonstrated in its ability to predict realistic heterogeneous near-surface velocity patterns in urban regions.  more » « less
Award ID(s):
1663978
NSF-PAR ID:
10282233
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Weather Review
ISSN:
0027-0644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The multilayer urban canopy models (UCMs) building effect parameterization (BEP) and BEP + building energy model (BEM; a building energy model integrated in BEP) are added to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization in the Weather Research and Forecasting (WRF) Model. The additions allow for the first analysis of the detailed effects of buildings on the urban boundary layer in a nonlocal closure scheme. The modified YSU PBL parameterization is compared with the other 1.5-order local PBL parameterizations that predict turbulent kinetic energy (TKE), Mellor–Yamada–Janjić and Bougeault–Lacarerre, using both ideal and real cases. The ideal-case evaluation confirms that BEP and BEP+BEM produce the expected results in the YSU PBL parameterization because the simulations are qualitatively similar to the TKE-based PBL parameterizations in which the multilayer UCMs have long existed. The modified YSU PBL parameterization is further evaluated for a real case. Similar to the ideal case, there are larger differences among the different UCMs (simple bulk scheme, BEP, and BEP+BEM) than across the PBL parameterizations when the UCM is held fixed. Based on evaluation against urban near-surface wind and temperature observations for this case, the BEP and BEP+BEM simulations are superior to the simple bulk scheme for each PBL parameterization. 
    more » « less
  2. Urban canopy models (UCMs) in mesoscale numerical weather prediction models need evaluation to understand biases in urban environments under a range of conditions. The authors evaluate a new drag formula in the Weather Research and Forecasting (WRF) model’s multilayer UCM, the Building Effect Parameterization combined with the Building Energy Model (BEP+BEM), against both in-situ measurements in the urban environment as well as simulations with a simple bulk scheme and BEP+BEM using the old drag formula. The new drag formula varies with building packing density, while the old drag formula is constant. The case study is a strong cold frontal passage that occurred in Houston during the winter of 2017, causing high winds. It is found that both BEP+BEM simulations have lower peak wind speeds, consistent with near-surface measurements, while the bulk simulation has winds that are too strong. The constant-drag BEP+BEM simulation has a near-zero wind speed bias, while the new-drag simulation has a negative bias. Although the focus is on the impact of drag on the urban wind speeds, both BEP+BEM simulations have larger negative biases in the near-surface temperature than the bulk-scheme simulation. Reasons for the different performances are discussed. 
    more » « less
  3. Abstract

    Taking the examples of Hurricane Florence (2018) over the Carolinas and Hurricane Harvey (2017) over the Texas Gulf Coast, the study attempts to understand the performance of slab, single‐layer Urban Canopy Model (UCM), and Building Environment Parameterization (BEP) in simulating hurricane rainfall using the Weather Research and Forecasting (WRF) model. The WRF model simulations showed that for an intense, large‐scale event such as a hurricane, the model quantitative precipitation forecast over the urban domain was sensitive to the model urban physics. The spatial and temporal verification using the modified Kling‐Gupta efficiency and Method for Object based Diagnostic and Evaluation in Time Domain suggests that UCM performance is superior to the BEP scheme. Additionally, using the BEP urban physics scheme over UCM for landfalling hurricane rainfall simulations has helped simulate heavy rainfall hotspots.

     
    more » « less
  4. Recent studies have shown that climate change and global warming considerably increase the risks of hurricane winds, floods, and storm surges in coastal communities. Turbulent processes in Hurricane Boundary Layers (HBLs) play a major role in hurricane dynamics and intensification. Most of the existing turbulence parameterizations in the current numerical weather prediction (NWP) models rely on the Planetary Boundary Layer (PBL) schemes. Previous studies (Zhang 2010; Momen et al. 2021) showed that there is a significant distinction between turbulence characteristics in HBLs and regular atmospheric boundary layers (ABLs) due to the strong rotational effects of hurricane flows. Nevertheless, such differences are not considered in the current schemes of NWPs, and they are primarily designed and tested for regular ABLs. In this talk, we aim to bridge this knowledge gap by conducting new hurricane simulations using the Weather Research and Forecasting (WRF) model as well as large-eddy simulations. We investigate the role of the PBL parameterizations and momentum roughness length in multiple hurricanes by probing the parameter space of the problem. Our simulations have shown that the most widely used WRF PBL schemes do not capture the hurricane intensification properly and underestimate their intensity. We will present that decreasing the roughness length close to the values of observational estimates and theoretical hurricane intensity models in high wind regimes (≳ 45 m s-1) led to significant improvements in the intensity forecasts of strong hurricanes. Furthermore, by decreasing the existing vertical diffusion values, on average more than 20% improvements in hurricane intensity forecasts were obtained compared to the default runs. Our results provide new insights into the role of turbulence parameterizations in hurricane dynamics and can be employed to improve the accuracy of real hurricane forecasts. The implications of these results and improvements for coastal resiliency and fluid-structure interactions will also be discussed. 
    more » « less
  5. Tropical cyclones are one of the deadliest natural disasters in the world that cause significant damage to the environment and infrastructure. The Hurricane Boundary Layer (HBL) plays a major role in hurricane dynamics and its intensification. Most of the existing vertical diffusion parameterizations in the current numerical weather prediction models rely on the Planetary Boundary Layer (PBL) schemes. Previous studies (Momen et al. 2021; Romdhani et al. 2022) showed that there is a significant distinction between turbulence characteristics in HBLs and regular atmospheric boundary layers (ABLs) due to the strong rotational effects of hurricane flows. Nevertheless, such differences are not considered in the current PBL schemes, and they are primarily designed and tested for regular ABLs. In this talk, we aim to bridge this knowledge gap by conducting real hurricane simulations using the Weather Research and Forecasting (WRF) model. We investigate the role of the PBL height and eddy momentum exchange coefficients in five intensifying hurricanes by probing the parameter space of the problem. Our simulations have shown that the most widely used WRF PBL schemes do not capture the hurricane intensification properly and underestimate their intensity. We will demonstrate how limiting the amount of the vertical transport of momentum greatly benefits the skill of forecasting in major hurricane simulations. We will also present how changing the height of the PBL significantly impacts the accuracy of the forecasts. By reducing the PBL height, simulated hurricanes become stronger and larger – representing the actual rapid intensification process much more accurately. Not only changes are seen in the predicted wind intensities, but also remarkable impacts are observed in storm size, the radius of maximum wind speed, hurricane track, and minimum sea level pressure. The results of this study provide insights into the role of vertical diffusion parameterizations in hurricane dynamics. Our findings can be used to improve the accuracy of real hurricane forecasts in numerical weather prediction models. 
    more » « less