skip to main content


Search for: All records

Award ID contains: 1663978

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Proposals to use technology to cool sea surface temperatures have received attention for the potential application of weakening a tropical cyclone ahead of landfall. Here, application of an ocean-mixing aware maximum potential intensity theory finds that artificial ocean cooling could drastically weaken tropical cyclones over high sea surface temperature and deep ocean mixed layer environments, especially for fast storm motion speeds. In contrast, realistic mesoscale numerical simulations reveal that massive regions - the largest evaluated here contains a volume of 2.1 × 104 km3and a surface area of 2.6 × 105km2- of artificially cooled ocean waters could weaken a tropical cyclone two days before landfall by 15% but only under the most ideal atmospheric and oceanic conditions. Thus, the fundamental theory provides an unreachable upper-bound that cannot be attained even by expending vast resources.

     
    more » « less
  2. Abstract

    The evolution of the tropical cyclone boundary layer (TCBL) wind field before landfall is examined in this study. As noted in previous studies, a typical TCBL wind structure over the ocean features a supergradient boundary layer jet to the left of motion and Earth-relative maximum winds to the right. However, the detailed response of the wind field to frictional convergence at the coastline is less well known. Here, idealized numerical simulations reveal an increase in the offshore radial and vertical velocities beginning once the TC is roughly 200 km offshore. This increase in the radial velocity is attributed to the sudden decrease in frictional stress once the highly agradient flow crosses the offshore coastline. Enhanced advection of angular momentum by the secondary circulation forces a strengthening of the supergradient jet near the top of the TCBL. Sensitivity experiments reveal that the coastal roughness discontinuity dominates the friction asymmetry due to motion. Additionally, increasing the inland roughness through increasing the aerodynamic roughness length enhances the observed asymmetries. Last, a brief analysis of in situ surface wind data collected during the landfall of three Gulf of Mexico hurricanes is provided and compared to the idealized simulations. Despite the limited in situ data, the observations generally support the simulations. The results here imply that assumptions about the TCBL wind field based on observations from over horizontally homogeneous surface types—which have been well documented by previous studies—are inappropriate for use near strong frictional heterogeneity.

     
    more » « less
  3. Urban canopy models (UCMs) in mesoscale numerical weather prediction models need evaluation to understand biases in urban environments under a range of conditions. The authors evaluate a new drag formula in the Weather Research and Forecasting (WRF) model’s multilayer UCM, the Building Effect Parameterization combined with the Building Energy Model (BEP+BEM), against both in-situ measurements in the urban environment as well as simulations with a simple bulk scheme and BEP+BEM using the old drag formula. The new drag formula varies with building packing density, while the old drag formula is constant. The case study is a strong cold frontal passage that occurred in Houston during the winter of 2017, causing high winds. It is found that both BEP+BEM simulations have lower peak wind speeds, consistent with near-surface measurements, while the bulk simulation has winds that are too strong. The constant-drag BEP+BEM simulation has a near-zero wind speed bias, while the new-drag simulation has a negative bias. Although the focus is on the impact of drag on the urban wind speeds, both BEP+BEM simulations have larger negative biases in the near-surface temperature than the bulk-scheme simulation. Reasons for the different performances are discussed. 
    more » « less
  4. null (Ed.)
    Abstract The simulated winds within the urban canopy of landfalling tropical cyclones are sensitive to the representation of the planetary-boundary and urban-canopy layers in numerical weather prediction models. In order to assess the sub-grid-scale parameterizations of these layers, mesoscale model simulations were executed and evaluated against near-surface observations as the outer wind field of Hurricane Irma (2017) interacted with the built-up region from downtown Miami northward to West Palm Beach. Four model simulations were examined, comprised of two different planetary boundary layer (PBL) parameterizations (a local closure scheme with turbulent kinetic energy prediction and a nonlocal closure scheme) and two different urban canopy models (UCMs) [a zeroth order bulk scheme and a multilayer Building Effect Parameterization (BEP) that mimics the three-dimensionality of buildings]. Overall, the simulated urban canopy winds were weakly sensitive to the PBL scheme and strongly sensitive to the UCM. The bulk simulations compared most favorably to an analyzed wind swath in the urban environment, while the BEP simulations had larger negative biases in the same region. There is uncertainty in magnitude of the urban environment biases due to the lack of many urban sheltered measurements in the wind swath analysis. Biases in the rural environment were similar among the bulk and BEP simulations. An improved comparison with the analyzed wind swath in the urban region was obtained by reducing the drag coefficient in BEP in one of the PBL schemes. The usefulness of BEP was demonstrated in its ability to predict realistic heterogeneous near-surface velocity patterns in urban regions. 
    more » « less
  5. null (Ed.)
    Abstract Although global and regional dynamical models are used to predict the tracks and intensities of hurricanes over the ocean, these models are not currently used to predict the wind field and other impacts over land. This two-part study performs detailed evaluations of the near-surface, overland wind fields produced in simulations of Hurricane Wilma (2005) as it traveled across South Florida. This first part describes the production of two high-resolution simulations using the Weather Research and Forecasting (WRF) Model, using different boundary layer parameterizations available in WRF: the Mellor–Yamada–Janjić (MYJ) scheme and the Yonsei University (YSU) scheme. Initial conditions from the Global Forecasting System are manipulated with a vortex-bogusing technique to modify the initial intensity, size, and location of the cyclone. It is found possible through trial and error to successfully produce simulations using both the YSU and MYJ schemes that closely reproduce the track, intensity, and size of Wilma at landfall. For both schemes the storm size and structure also show good agreement with the wind fields diagnosed by H*WIND and the Tropical Cyclone Surface Wind Analysis. Both over water and over land, the YSU scheme has stronger winds over larger areas than does the MYJ, but the surface winds are more reduced in areas of greater surface roughness, particularly in urban areas. Both schemes produced very similar inflow angles over land and water. The overland wind fields are examined in more detail in the second part of this study. 
    more » « less
  6. null (Ed.)
    Abstract The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage. 
    more » « less
  7. null (Ed.)
    Abstract This is the second of a two-part study that explores the capabilities of a mesoscale atmospheric model to reproduce the near-surface wind fields in hurricanes over land. The Weather Research and Forecasting (WRF) Model is used with two planetary boundary layer parameterizations: the Yonsei University (YSU) and the Mellor–Yamada–Janjić (MYJ) schemes. The first part presented the modeling framework and initial conditions used to produce simulations of Hurricane Wilma (2005) that closely reproduced the track, intensity, and size of its wind field as it passed over South Florida. This part explores how well these simulations can reproduce the winds at fixed points over land by making comparisons with observations from airports and research weather stations. The results show that peak wind speeds are remarkably well reproduced at several locations. Wind directions are evaluated in terms of the inflow angle relative to the storm center, and the simulated inflow angles are generally smaller than observed. Localized peak wind events are associated with vertical vorticity maxima in the boundary layer with horizontal scales of 5–10 km. The boundary layer winds are compared with wind profiles obtained by velocity–azimuth display (VAD) analyses from National Weather Service Doppler radars at Miami and Key West, Florida; results from these comparisons are mixed. Nonetheless the comparisons with surface observations suggest that when short-term hurricane forecasts can sufficiently predict storm track, intensity, and size, they will also be able to provide useful information on extreme winds at locations of interest. 
    more » « less
  8. null (Ed.)
    Abstract The multilayer urban canopy models (UCMs) building effect parameterization (BEP) and BEP + building energy model (BEM; a building energy model integrated in BEP) are added to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization in the Weather Research and Forecasting (WRF) Model. The additions allow for the first analysis of the detailed effects of buildings on the urban boundary layer in a nonlocal closure scheme. The modified YSU PBL parameterization is compared with the other 1.5-order local PBL parameterizations that predict turbulent kinetic energy (TKE), Mellor–Yamada–Janjić and Bougeault–Lacarerre, using both ideal and real cases. The ideal-case evaluation confirms that BEP and BEP+BEM produce the expected results in the YSU PBL parameterization because the simulations are qualitatively similar to the TKE-based PBL parameterizations in which the multilayer UCMs have long existed. The modified YSU PBL parameterization is further evaluated for a real case. Similar to the ideal case, there are larger differences among the different UCMs (simple bulk scheme, BEP, and BEP+BEM) than across the PBL parameterizations when the UCM is held fixed. Based on evaluation against urban near-surface wind and temperature observations for this case, the BEP and BEP+BEM simulations are superior to the simple bulk scheme for each PBL parameterization. 
    more » « less