skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The nonequilibrium behaviors of covalent adaptable network polymers during the topology transition
Vitrimers with bond exchange reactions (BERs) are a class of covalent adaptable network (CAN) polymers at the forefront of recent polymer research. They exhibit malleable and self-healable behaviors and combine the advantages of easy processability of thermoplastics and excellent mechanical properties of thermosets. For thermally sensitive vitrimers, a molecular topology melting/frozen transition is triggered when the BERs are activated to rearrange the network architecture. Notable volume expansion and stress relaxation are accompanied, which can be used to identify the BER activation temperature and rate as well as to determine the malleability and interfacial welding kinetics of vitrimers. Existing works on vitrimers reveal the rate-dependent behaviors of the nonequilibrium network during the topology transition. However, it remains unclear what the quantitative relationship with heating rate is, and how it will affect the macroscopic stress relaxation. In this paper, we study the responses of an epoxy-based vitrimer subjected to a change in temperature and mechanical loading during the topology transition. Using thermal expansion tests, the thermal strain evolution is shown to depend on the temperature-changing rate, which reveals the nonequilibrium states with rate-dependent structural relaxation. The influences of structural relaxation on the stress relaxation behaviors are examined in both uniaxial tension and compression modes. Assisted by a theoretical model, the study reveals how to tune the material and thermal-temporal conditions to promote the contribution of BERs during the reprocessing of vitrimers.  more » « less
Award ID(s):
1901807
PAR ID:
10282281
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
8
ISSN:
1744-683X
Page Range / eLocation ID:
2104 to 2119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The development of vitrimers with dynamic covalent bonds enables reprocessability in crosslinked networks, offering a sustainable alternative to conventional thermosets. In this work, a thiol-acrylate vitrimer was synthesized from lignin-derivable (bis)phenols (guaiacol and bisguaiacol F) and compared to a control derived from petroleum-based precursors (phenol and bisphenol F) to investigate the effect of structural differences on network properties and thermal reprocessing. The presence of methoxy groups in the lignin-derivable vitrimer promoted intermolecular interactions by serving as additional hydrogen bonding acceptors during curing, leading to a denser network, as evidenced by a higher rubbery storage modulus (∼2.4 MPa vs. ∼1.4 MPa) and glass transition temperature (∼34 °C vs. ∼28 °C). The lignin-derivable vitrimer exhibited a slightly higher elongation-at-break (∼170% vs. ∼130%) and improved mechanical robustness, including a nearly two-fold increase in Young's modulus (∼6.9 MPa vs. ∼3.4 MPa) and toughness (∼750 kJ m−3vs. ∼390 kJ m−3). The similar stress relaxation behavior and activation energy of viscous flow indicated comparable bond exchange dynamics between the two vitrimers, while the lignin-derivable system demonstrated higher thermal healing efficiency with improved recovery of tensile properties after reprocessing. These findings highlight the potential of lignin-based aromatics in designing mechanically robust and sustainable vitrimers, aligning with efforts to develop renewable and reprocessable polymeric materials. 
    more » « less
  2. An externally restrained stress relief cracking test was developed and demonstrated in testing susceptible and resistant to cracking welds in Cr–Mo steels. Compared to other externally restrained tests, it simultaneously applies stress and compensates thermal expansion during heating to post-weld heat treatment temperature and utilises digital image correlation for quantification of key characteristics of the stress relaxation and stress relief cracking phenomena. In contrast with resistant to stress relief cracking materials, susceptible materials experienced lower levels of stress relaxation, strain absorption, and sustained mechanical energy, with accelerated kinetics of strain accumulation and strain localisation leading to failure. The processes of stress relief cracking and stress relaxation were quantified as low strain – slow strain rate – low energy phenomena. 
    more » « less
  3. Abstract Structural and mechanical cues from the extracellular matrix (ECM) regulate tissue morphogenesis. Tissue development has conventionally been studied withex vivosystems where mechanical properties of the extracellular environment are either poorly controlled in space and time, lack tunability, or do not mimic ECM mechanics. For these reasons, it remains unknown how matrix stress relaxation rate, a time-dependent mechanical property that influences several cellular processes, regulates mammary branching morphogenesis. Here, we systematically investigated the influence of matrix stress relaxation on mammary branching morphogenesis using 3D alginate-collagen matrices and spheroids of human mammary epithelial cells. Slow stress relaxing matrices promoted significantly greater branch formation compared to fast stress relaxing matrices. Branching in slow stress relaxing matrices was accompanied by local collagen fiber alignment, while collagen fibers remained randomly oriented in fast stress relaxing matrices. In slow stress relaxing matrices, branch formation was driven by intermittent pulling contractions applied to the local ECM at the tips of elongating branches, which was accompanied by an abundance of phosphorylated focal adhesion kinase (phospho-FAK) and β1 integrin at the tips of branches. On the contrary, we observed that growing spheroids in fast stress relaxing matrices applied isotropic pushing forces to the ECM. Pharmacological inhibition of both Rac1 and non-muscle myosin II prevented epithelial branch formation, regardless of matrix stress relaxation rate. Interestingly, restricting cellular expansion via increased osmotic pressure was sufficient to impede epithelial branching in slow stress relaxing matrices. This work highlights the importance of stress relaxation in regulating and directing mammary branch elongation. 
    more » « less
  4. Vitrimers, dynamic polymer networks with topology conserving exchange reactions, have emerged as a promising platform for sustainable and reprocessable materials. While prior work has documented how dynamic bonds impact stress relaxation and viscosity, their role on crystallization has not been systematically explored. Precise ethylene vitrimers with 8, 10, or 12 methylene units between boronic ester junctions were investigated to understand the impact of bond exchange on crystallization kinetics and morphology. Compared to linear polyethylene which has been heavily investigated for decades, a long induction period for crystallization is seen in the vitrimers ultimately taking weeks in the densest networks. An increase in melting temperatures ( T m ) of 25–30 K is observed with isothermal crystallization over 30 days. Both C 10 and C 12 networks initially form hexagonal crystals, while the C 10 network transforms to orthorhombic over the 30 day window as observed with wide angle X-ray scattering (WAXS) and optical microscopy (OM). After 150 days of isothermal crystallization, the three linker lengths led to double diamond (C 8 ), orthorhombic (C 10 ), and hexagonal (C 12 ) crystals indicating the importance of precision on final morphology. Control experiments on a precise, permanent network implicate dynamic bonds as the cause of long-time rearrangements of the crystals, which is critical to understand for applications of semi-crystalline vitrimers. The dynamic bonds also allow the networks to dissolve in water and alcohol-based solvents to monomers, followed by repolymerization while preserving the mechanical properties and melting temperatures. 
    more » « less
  5. Mechanical stimuli such as strain, force, and pressure are pervasive within and beyond the human body. Mechanoresponsive hydrogels have been engineered to undergo changes in their physicochemical or mechanical properties in response to such stimuli. Relevant responses can include strain-stiffening, self-healing, strain-dependent stress relaxation, and shear rate-dependent viscosity. These features are a direct result of dynamic bonds or non- covalent/physical interactions within such hydrogels. The contributions of various types of bonds and intermolecular interactions to these behaviors are important to more fully understand the resulting materials and engineer their mechanoresponsive features. Here, strain-stiffening in carboxymethylcellulose hydrogels crosslinked with pendant dynamic-covalent boronate esters using tannic acid is studied and modulated as a function of polymer concentration, temperature, and effective crosslink density. Furthermore, these materials are found to exhibit self-healing and strain- memory, as well as strain-dependent stress relaxation and shear rate-dependent changes in gel viscosity. These features are attributed to the dynamic nature of the boronate ester crosslinks, inter-chain hydrogen bonding and bundling, or a combination of these two intermolecular interactions. This work provides insight into the interplay of such interactions in the context of mechanoresponsive behaviors, particularly informing the design of hydrogels with tunable strain- stiffening. The multi-responsive and tunable nature of this hydrogel system therefore presents a promising platform for a variety of applications. 
    more » « less