skip to main content


Title: The nonequilibrium behaviors of covalent adaptable network polymers during the topology transition
Vitrimers with bond exchange reactions (BERs) are a class of covalent adaptable network (CAN) polymers at the forefront of recent polymer research. They exhibit malleable and self-healable behaviors and combine the advantages of easy processability of thermoplastics and excellent mechanical properties of thermosets. For thermally sensitive vitrimers, a molecular topology melting/frozen transition is triggered when the BERs are activated to rearrange the network architecture. Notable volume expansion and stress relaxation are accompanied, which can be used to identify the BER activation temperature and rate as well as to determine the malleability and interfacial welding kinetics of vitrimers. Existing works on vitrimers reveal the rate-dependent behaviors of the nonequilibrium network during the topology transition. However, it remains unclear what the quantitative relationship with heating rate is, and how it will affect the macroscopic stress relaxation. In this paper, we study the responses of an epoxy-based vitrimer subjected to a change in temperature and mechanical loading during the topology transition. Using thermal expansion tests, the thermal strain evolution is shown to depend on the temperature-changing rate, which reveals the nonequilibrium states with rate-dependent structural relaxation. The influences of structural relaxation on the stress relaxation behaviors are examined in both uniaxial tension and compression modes. Assisted by a theoretical model, the study reveals how to tune the material and thermal-temporal conditions to promote the contribution of BERs during the reprocessing of vitrimers.  more » « less
Award ID(s):
1901807
NSF-PAR ID:
10282281
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
8
ISSN:
1744-683X
Page Range / eLocation ID:
2104 to 2119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vitrimers, dynamic polymer networks with topology conserving exchange reactions, have emerged as a promising platform for sustainable and reprocessable materials. While prior work has documented how dynamic bonds impact stress relaxation and viscosity, their role on crystallization has not been systematically explored. Precise ethylene vitrimers with 8, 10, or 12 methylene units between boronic ester junctions were investigated to understand the impact of bond exchange on crystallization kinetics and morphology. Compared to linear polyethylene which has been heavily investigated for decades, a long induction period for crystallization is seen in the vitrimers ultimately taking weeks in the densest networks. An increase in melting temperatures ( T m ) of 25–30 K is observed with isothermal crystallization over 30 days. Both C 10 and C 12 networks initially form hexagonal crystals, while the C 10 network transforms to orthorhombic over the 30 day window as observed with wide angle X-ray scattering (WAXS) and optical microscopy (OM). After 150 days of isothermal crystallization, the three linker lengths led to double diamond (C 8 ), orthorhombic (C 10 ), and hexagonal (C 12 ) crystals indicating the importance of precision on final morphology. Control experiments on a precise, permanent network implicate dynamic bonds as the cause of long-time rearrangements of the crystals, which is critical to understand for applications of semi-crystalline vitrimers. The dynamic bonds also allow the networks to dissolve in water and alcohol-based solvents to monomers, followed by repolymerization while preserving the mechanical properties and melting temperatures. 
    more » « less
  2. Abstract

    The chemically crosslinked network structures make epoxies, the most common thermosets, unable or hard to be recycled, causing environmental problems and economic losses. Epoxy‐based vitrimers, polymer networks deriving from epoxy resins, can be thermally malleable according to bond exchange reactions (BERs), opening the door to recycle epoxy thermosets. Here a series of experiments were carried out to study the effects of processing conditions (such as particle size distributions, temperature, time, and pressure) on recycling of an epoxy‐anhydride vitrimer. Polymer powders from the epoxy‐anhydride vitrimer with different size distributions were prepared and characterized, and the influence of particle size on the mechanical performance of recycled epoxy‐anhydride vitrimers was investigated by dynamic mechanical analysis and uniaxial tensile test. Experimental results demonstrated that finer polymer powders can increase the contacting surfaces of recycled materials and thus result in high quality of recycled materials. In addition, the influences of other treating parameters, such as temperature, time, and pressure, were also discussed in this study. Adjusting these treating parameters can help the design of an optimized reprocessing procedure to meet practical engineering applications.

     
    more » « less
  3. In order to fully understand the thermo-hydro-mechanical behavior of the geotechnical infrastructures, the effects of temperature variations on soil properties and soil behavior have to be studied. Hydraulic conductivity, strength, volume change, moisture content, and pore pressure generation and dissipation rates depend on temperature variations. Thermal loading might induce excess pore water pressure and volumetric changes. Temperature changes in the fine-grained soils will cause expansion in water and soil particles. Since the coefficient of expansion for soil particles is much smaller than that for water, a generation of pore water pressure is expected. This thermally induced pore water pressure and then its dissipation during the relaxation period results in a time dependent consolidation. Thermal consolidation in fine grained soil is more dominant and can be irreversible in normally consolidated clay. However, the volumetric changes of highly over consolidated soil caused by temperature increment is reversible by temperature reduction. In this research, a modified consolidation testing device is used to study the effect of temperature increments (e.g., increasing step by step temperature increments to 80ºC) on the consolidation of fine grained soils. In another words the effect of temperature increments during the test on the consolidation process is studied. Time of applying the heating, target temperature, and initial void ratio are parameters affecting the rate and the amount of consolidation in the samples. 
    more » « less
  4. Metastable phases of the photoswitchable molecular magnet K0.3Co[Fe(CN)6]0.77 ⋅  nH2O in sub-micrometer particles have been structurally investigated by synchrotron powder x-ray diffraction (PXRD) measurements. The K0.3Co[Fe(CN)6]0.77 ⋅  nH2O bulk compound (studied here with a sample having average particle size of 500 nm) undergoes a charge transfer coupled spin transition (CTCST), where spin configurations change between a paramagnetic CoII( S = 3/2) –FeIII( S = 1/2) high-temperature (HT) state and a diamagnetic CoIII( S = 0) –FeII( S = 0) low-temperature (LT) state. The bulk compound exhibits a unique intermediate (IM) phase, which corresponds to a mixture of HT and LT spin states that depend on the cooling rate. Several hidden metastable HT states emerge as a function of thermal and photo stimuli, namely: (1) a quench (Q) state generated from the HT state by flash cooling, (2) a LTPX state obtained by photoexcitation from the LT state derived by thermal relaxation from the Q state, and (3) an IMPX state accessed by photo-irradiation from the IM state. A sample with a smaller particle size, 135 nm, is investigated for which the particles are on the scale of the coherent LT domains in the IM phase within the larger 500 nm sample. PXRD studies under controlled thermal and/or optical excitations have clarified that the reduction of the particle size profoundly affects the structural changes associated with the CTCST. The unusual IM state is also observed as segregated domains in the 135 nm particle, but the collective structural transformations are more hindered in small particles. The volume change decreases to 2%–3%, almost half the value found for 500 nm particles (5%–8%), even though the linear thermal expansion coefficients are larger for the smaller particles. Furthermore, photoexcitation from the IM and LT states does not turn into single phases in the smaller particles, presumably because of the multiple interfaces and/or internal stress generated by the coexistence of small CoII–FeIIIand CoIII–FeIIdomains in the lattice. Since the reduced particle size limits cooperativity and domain growth in the lattice, CTCST in the small particle sample becomes less sensitive to external stimuli.

     
    more » « less
  5. Abstract

    The operation of fracture, diffusion, and intracrystalline‐plastic micromechanisms during semibrittle deformation of rock is directly relevant to understanding mechanical behavior across the brittle‐plastic transition in the crust. An outstanding question is whether (1) the micromechanisms of semibrittle flow can be considered to operate independently, as represented in typical crustal strength profiles across the brittle to plastic transition, or (2) the micromechanisms are coupled such that the transition is represented by a distinct rheology with dependency on effective pressure, temperature, and strain rate. We employ triaxial stress‐cycling experiments to investigate elastic‐plastic and viscoelastic behaviors during semibrittle flow in two distinctly different monomineralic, polycrystalline, synthetic salt‐rocks. During semibrittle flow at high differential stress, granular, low‐porosity, work‐hardened salt‐rocks deform predominantly by grain‐boundary sliding and wing‐crack opening accompanied by minor intragranular dislocation glide. In contrast, fully annealed, near‐zero porosity salt‐rocks flow at lower differential stress by intragranular dislocation glide accompanied by grain‐boundary sliding and opening. Grain‐boundary sliding is frictional during semibrittle flow at higher strain rates, but the associated dispersal of water from fluid inclusions along boundaries can activate fluid‐assisted diffusional sliding at lower strain rates. Changes in elastic properties with semibrittle flow largely reflect activation of sliding along closed grain boundaries. Observed microstructures, pronounced hysteresis and anelasticity during cyclic stressing after semibrittle flow, and stress relaxation behaviors indicate coupled operation of micromechanisms leading to a distinct rheology (hypothesis 2 above).

     
    more » « less