skip to main content


Title: Host-star and exoplanet compositions: a pilot study using a wide binary with a polluted white dwarf
ABSTRACT Planets and stars ultimately form out of the collapse of the same cloud of gas. Whilst planets, and planetary bodies, readily loose volatiles, a common hypothesis is that they retain the same refractory composition as their host star. This is true within the Solar system. The refractory composition of chondritic meteorites, Earth, and other rocky planetary bodies are consistent with solar, within the observational errors. This work aims to investigate whether this hypothesis holds for exoplanetary systems. If true, the internal structure of observed rocky exoplanets can be better constrained using their host star abundances. In this paper, we analyse the abundances of the K-dwarf, G200-40, and compare them to its polluted white dwarf companion, WD 1425+540. The white dwarf has accreted planetary material, most probably a Kuiper belt-like object, from an outer planetary system surviving the star’s evolution to the white dwarf phase. Given that binary pairs are chemically homogeneous, we use the binary companion, G200-40, as a proxy for the composition of the progenitor to WD 1425+540. We show that the elemental abundances of the companion star and the planetary material accreted by WD 1425+540 are consistent with the hypothesis that planet and host-stars have the same true abundances, taking into account the observational errors.  more » « less
Award ID(s):
1826583
NSF-PAR ID:
10282293
Author(s) / Creator(s):
; ; ; ;  ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1877 to 1883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Planetary engulfment events can occur while host stars are on the main sequence. The addition of rocky planetary material during engulfment will lead to refractory abundance enhancements in the host star photosphere, but the level of enrichment and its duration will depend on mixing processes that occur within the stellar interior, such as convection, diffusion, and thermohaline mixing. We examine engulfment signatures by modelling the evolution of photospheric lithium abundances. Because lithium can be burned before or after the engulfment event, it produces unique signatures that vary with time and host star type. Using mesa stellar models, we quantify the strength and duration of these signatures following the engulfment of a 1, 10, or 100 M⊕ planetary companion with bulk Earth composition, for solar-metallicity host stars with masses ranging from 0.5 to 1.4 M⊙. We find that lithium is quickly depleted via burning in low-mass host stars ($\lesssim 0.7 \, {\rm M}_\odot$) on a time-scale of a few hundred Myrs, but significant lithium enrichment signatures can last for Gyrs in G-type stars ($\sim \! 0.9 \, {\rm M}_{\odot }$). For more massive stars (1.3−1.4 M⊙), engulfment can enhance internal mixing and diffusion processes, potentially decreasing the surface lithium abundance. Our predicted signatures from exoplanet engulfment are consistent with observed lithium-rich solar-type stars and abundance enhancements in chemically inhomogeneous binary stars.

     
    more » « less
  2. ABSTRACT

    A large fraction of white dwarfs (WDs) have metal-polluted atmospheres, which are produced by accreting material from remnant planetary systems. The composition of the accreted debris broadly resembles that of rocky Solar system objects. Volatile-enriched debris with compositions similar to long-period comets (LPCs) is rarely observed. We attempt to reconcile this dearth of volatiles with the premise that exo-Oort clouds (XOCs) occur around a large fraction of planet-hosting stars. We estimate the comet accretion rate from an XOC analytically, adapting the ‘loss cone’ theory of LPC delivery in the Solar system. We investigate the dynamical evolution of an XOC during late stellar evolution. Using numerical simulations, we show that 1–30 per cent of XOC objects remain bound after anisotropic stellar mass-loss imparting a WD natal kick of ${\sim}1 \, {\rm km \, s^{-1}}$. We also characterize the surviving comets’ distribution function. Surviving planets orbiting a WD can prevent the accretion of XOC comets by the star. A planet’s ‘dynamical barrier’ is effective at preventing comet accretion if the energy kick imparted by the planet exceeds the comet’s orbital binding energy. By modifying the loss cone theory, we calculate the amount by which a planet reduces the WD’s accretion rate. We suggest that the scarcity of volatile-enriched debris in polluted WDs is caused by an unseen population of 10–$100 \, \mathrm{au}$ scale giant planets acting as barriers to incoming LPCs. Finally, we constrain the amount of volatiles delivered to a planet in the habitable zone of an old, cool WD.

     
    more » « less
  3. Abstract

    We present observations and analyses of eight white dwarf stars (WDs) that have accreted rocky material from their surrounding planetary systems. The spectra of these helium-atmosphere WDs contain detectable optical lines of all four major rock-forming elements (O, Mg, Si, and Fe). This work increases the sample of oxygen-bearing WDs with parent body composition analyses by roughly 33%. To first order, the parent bodies that have been accreted by the eight WDs are similar to those of chondritic meteorites in relative elemental abundances and oxidation states. Seventy-five percent of the WDs in this study have observed oxygen excesses implying volatiles in the parent bodies with abundances similar to those of chondritic meteorites. Three WDs have oxidation states that imply more reduced material than found in CI chondrites, indicating the possible detection of Mercury-like parent bodies, but are less constrained. These results contribute to the recurring conclusion that extrasolar rocky bodies closely resemble those in our solar system, and do not, as a whole, yield unusual or unique compositions.

     
    more » « less
  4. Abstract We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by recent work finding that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction ≳90% of the secondary at velocities ∼500–1000 km s −1 within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity ≳10 38 erg s −1 , similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ∼300–5000 L ⊙ , effective temperature T eff ≈ 3000 K, and lifetime ∼10 4 –10 5 yr. We predict that ∼10 3 –10 4 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger. 
    more » « less
  5. Abstract The recent discoveries of WD J091405.30+191412.25 (WD J0914 hereafter), a white dwarf (WD) likely accreting material from an ice-giant planet, and WD 1856+534 b (WD 1856 b hereafter), a Jupiter-sized planet transiting a WD, are the first direct evidence of giant planets orbiting WDs. However, for both systems, the observations indicate that the planets’ current orbital distances would have put them inside the stellar envelope during the red-giant phase, implying that the planets must have migrated to their current orbits after their host stars became WDs. Furthermore, WD J0914 is a very hot WD with a short cooling time that indicates a fast migration mechanism. Here, we demonstrate that the Eccentric Kozai–Lidov Mechanism, combined with stellar evolution and tidal effects, can naturally produce the observed orbital configurations, assuming that the WDs have distant stellar companions. Indeed, WD 1856 is part of a stellar triple system, being a distant companion to a stellar binary. We provide constraints for the orbital and physical characteristics for the potential stellar companion of WD J0914 and determine the initial orbital parameters of the WD 1856 system. 
    more » « less