skip to main content


Title: Host-star and exoplanet compositions: a pilot study using a wide binary with a polluted white dwarf
ABSTRACT Planets and stars ultimately form out of the collapse of the same cloud of gas. Whilst planets, and planetary bodies, readily loose volatiles, a common hypothesis is that they retain the same refractory composition as their host star. This is true within the Solar system. The refractory composition of chondritic meteorites, Earth, and other rocky planetary bodies are consistent with solar, within the observational errors. This work aims to investigate whether this hypothesis holds for exoplanetary systems. If true, the internal structure of observed rocky exoplanets can be better constrained using their host star abundances. In this paper, we analyse the abundances of the K-dwarf, G200-40, and compare them to its polluted white dwarf companion, WD 1425+540. The white dwarf has accreted planetary material, most probably a Kuiper belt-like object, from an outer planetary system surviving the star’s evolution to the white dwarf phase. Given that binary pairs are chemically homogeneous, we use the binary companion, G200-40, as a proxy for the composition of the progenitor to WD 1425+540. We show that the elemental abundances of the companion star and the planetary material accreted by WD 1425+540 are consistent with the hypothesis that planet and host-stars have the same true abundances, taking into account the observational errors.  more » « less
Award ID(s):
1826583
NSF-PAR ID:
10282293
Author(s) / Creator(s):
; ; ; ;  ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1877 to 1883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    This second paper presents an in-depth analysis of the composition of the planetary material that has been accreted on to seven white dwarfs with circumstellar dust and gas emission discs with abundances reported in Rogers et al. The white dwarfs are accreting planetary bodies with a wide range of oxygen, carbon, and sulphur volatile contents, including one white dwarf that shows the most enhanced sulphur abundance seen to date. Three white dwarfs show tentative evidence (2–3$\sigma$) of accreting oxygen-rich material, potentially from water-rich bodies, whilst two others are accreting dry, rocky material. One white dwarf is accreting a mantle-rich fragment of a larger differentiated body, whilst two white dwarfs show an enhancement in their iron abundance and could be accreting core-rich fragments. Whilst most planetary material accreted by white dwarfs display chondritic or bulk Earth-like compositions, these observations demonstrate that core-mantle differentiation, disruptive collisions, and the accretion of core-mantle differentiated material are important. Less than 1 per cent of polluted white dwarfs host both observable circumstellar gas and dust. It is unknown whether these systems are experiencing an early phase in the disruption and accretion of planetary bodies, or alternatively if they are accreting larger planetary bodies. From this work there is no substantial evidence for significant differences in the accreted refractory abundance ratios for those white dwarfs with or without circumstellar gas, but there is tentative evidence for those with circumstellar gas discs to be accreting more water rich material which may suggest that volatiles accrete earlier in a gas-rich phase.

     
    more » « less
  2. Abstract

    We present observations and analyses of eight white dwarf stars (WDs) that have accreted rocky material from their surrounding planetary systems. The spectra of these helium-atmosphere WDs contain detectable optical lines of all four major rock-forming elements (O, Mg, Si, and Fe). This work increases the sample of oxygen-bearing WDs with parent body composition analyses by roughly 33%. To first order, the parent bodies that have been accreted by the eight WDs are similar to those of chondritic meteorites in relative elemental abundances and oxidation states. Seventy-five percent of the WDs in this study have observed oxygen excesses implying volatiles in the parent bodies with abundances similar to those of chondritic meteorites. Three WDs have oxidation states that imply more reduced material than found in CI chondrites, indicating the possible detection of Mercury-like parent bodies, but are less constrained. These results contribute to the recurring conclusion that extrasolar rocky bodies closely resemble those in our solar system, and do not, as a whole, yield unusual or unique compositions.

     
    more » « less
  3. ABSTRACT

    Planetary engulfment events can occur while host stars are on the main sequence. The addition of rocky planetary material during engulfment will lead to refractory abundance enhancements in the host star photosphere, but the level of enrichment and its duration will depend on mixing processes that occur within the stellar interior, such as convection, diffusion, and thermohaline mixing. We examine engulfment signatures by modelling the evolution of photospheric lithium abundances. Because lithium can be burned before or after the engulfment event, it produces unique signatures that vary with time and host star type. Using mesa stellar models, we quantify the strength and duration of these signatures following the engulfment of a 1, 10, or 100 M⊕ planetary companion with bulk Earth composition, for solar-metallicity host stars with masses ranging from 0.5 to 1.4 M⊙. We find that lithium is quickly depleted via burning in low-mass host stars ($\lesssim 0.7 \, {\rm M}_\odot$) on a time-scale of a few hundred Myrs, but significant lithium enrichment signatures can last for Gyrs in G-type stars ($\sim \! 0.9 \, {\rm M}_{\odot }$). For more massive stars (1.3−1.4 M⊙), engulfment can enhance internal mixing and diffusion processes, potentially decreasing the surface lithium abundance. Our predicted signatures from exoplanet engulfment are consistent with observed lithium-rich solar-type stars and abundance enhancements in chemically inhomogeneous binary stars.

     
    more » « less
  4. Abstract

    Chemical anomalies in planet-hosting stars (PHSs) are studied in order to assess how the planetary nature and multiplicity affect the atmospheric chemical abundances of their host stars. We employ APOGEE DR17 to select thin-disk stars of the Milky Way, and crossmatch them with the Kepler Input Catalog to identify confirmed PHSs, which results in 227 PHSs with available chemical abundance ratios for six refractory elements. We also examine an ensemble of stars without planet signals, which are equivalent to the selected PHSs in terms of evolutionary stage and stellar parameters, to correct for Galactic chemical evolution effects, and derive the abundance gradient of refractory elements over the condensation temperature for the PHSs. Using the Galactic chemical evolution corrected abundances, we find that our PHSs do not show a significant difference in abundance slope from the stars without planets. However, when we examine the trends of the refractory elements of PHSs, based on the total number of their planets and their planet types, we find that the PHSs with giant planets are more depleted in refractory elements than those with rocky planets. Among the PHSs with rocky planets, the refractory depletion trends are potentially correlated with the terrestrial planets’ radii and multiplicity. In the cases of PHSs with giant planets, sub-Jovian PHSs demonstrate more depleted refractory trends than stars hosting Jovian-mass planets, raising questions on different planetary formation processes for Neptune-like and Jupiter-like planets.

     
    more » « less
  5. Abstract The recent discoveries of WD J091405.30+191412.25 (WD J0914 hereafter), a white dwarf (WD) likely accreting material from an ice-giant planet, and WD 1856+534 b (WD 1856 b hereafter), a Jupiter-sized planet transiting a WD, are the first direct evidence of giant planets orbiting WDs. However, for both systems, the observations indicate that the planets’ current orbital distances would have put them inside the stellar envelope during the red-giant phase, implying that the planets must have migrated to their current orbits after their host stars became WDs. Furthermore, WD J0914 is a very hot WD with a short cooling time that indicates a fast migration mechanism. Here, we demonstrate that the Eccentric Kozai–Lidov Mechanism, combined with stellar evolution and tidal effects, can naturally produce the observed orbital configurations, assuming that the WDs have distant stellar companions. Indeed, WD 1856 is part of a stellar triple system, being a distant companion to a stellar binary. We provide constraints for the orbital and physical characteristics for the potential stellar companion of WD J0914 and determine the initial orbital parameters of the WD 1856 system. 
    more » « less