skip to main content


Title: On the pollution of white dwarfs by exo-Oort cloud comets
ABSTRACT

A large fraction of white dwarfs (WDs) have metal-polluted atmospheres, which are produced by accreting material from remnant planetary systems. The composition of the accreted debris broadly resembles that of rocky Solar system objects. Volatile-enriched debris with compositions similar to long-period comets (LPCs) is rarely observed. We attempt to reconcile this dearth of volatiles with the premise that exo-Oort clouds (XOCs) occur around a large fraction of planet-hosting stars. We estimate the comet accretion rate from an XOC analytically, adapting the ‘loss cone’ theory of LPC delivery in the Solar system. We investigate the dynamical evolution of an XOC during late stellar evolution. Using numerical simulations, we show that 1–30 per cent of XOC objects remain bound after anisotropic stellar mass-loss imparting a WD natal kick of ${\sim}1 \, {\rm km \, s^{-1}}$. We also characterize the surviving comets’ distribution function. Surviving planets orbiting a WD can prevent the accretion of XOC comets by the star. A planet’s ‘dynamical barrier’ is effective at preventing comet accretion if the energy kick imparted by the planet exceeds the comet’s orbital binding energy. By modifying the loss cone theory, we calculate the amount by which a planet reduces the WD’s accretion rate. We suggest that the scarcity of volatile-enriched debris in polluted WDs is caused by an unseen population of 10–$100 \, \mathrm{au}$ scale giant planets acting as barriers to incoming LPCs. Finally, we constrain the amount of volatiles delivered to a planet in the habitable zone of an old, cool WD.

 
more » « less
NSF-PAR ID:
10439591
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 6181-6197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polluted white dwarfs (WDs) offer a unique way to study the bulk compositions of exoplanetary material, but it is not always clear if this material originates from comets, asteroids, moons, or planets. We combineN-body simulations with an analytical model to assess the prevalence of extrasolar moons as WD polluters. Using a sample of observed polluted WDs, we find that the extrapolated parent body masses of the polluters are often more consistent with those of many solar system moons, rather than solar-like asteroids. We provide a framework for estimating the fraction of WDs currently undergoing observable moon accretion based on results from simulated WD planetary and moon systems. Focusing on a three-planet WD system of super-Earth to Neptune-mass bodies, we find that we could expect about one percent of such systems to be currently undergoing moon accretions as opposed to asteroid accretion.

     
    more » « less
  2. null (Ed.)
    ABSTRACT Planets and stars ultimately form out of the collapse of the same cloud of gas. Whilst planets, and planetary bodies, readily loose volatiles, a common hypothesis is that they retain the same refractory composition as their host star. This is true within the Solar system. The refractory composition of chondritic meteorites, Earth, and other rocky planetary bodies are consistent with solar, within the observational errors. This work aims to investigate whether this hypothesis holds for exoplanetary systems. If true, the internal structure of observed rocky exoplanets can be better constrained using their host star abundances. In this paper, we analyse the abundances of the K-dwarf, G200-40, and compare them to its polluted white dwarf companion, WD 1425+540. The white dwarf has accreted planetary material, most probably a Kuiper belt-like object, from an outer planetary system surviving the star’s evolution to the white dwarf phase. Given that binary pairs are chemically homogeneous, we use the binary companion, G200-40, as a proxy for the composition of the progenitor to WD 1425+540. We show that the elemental abundances of the companion star and the planetary material accreted by WD 1425+540 are consistent with the hypothesis that planet and host-stars have the same true abundances, taking into account the observational errors. 
    more » « less
  3. Abstract

    Ocean-vaporizing impacts of chemically reduced planetesimals onto the early Earth have been suggested to catalyze atmospheric production of reduced nitrogen compounds and trigger prebiotic synthesis despite an oxidized lithosphere. While geochemical evidence supports a dry, highly reduced late veneer on Earth, the composition of late-impacting debris around lower-mass stars is subject to variable volatile loss as a result of their hosts’ extended pre-main-sequence phase. We perform simulations of late-stage planet formation across the M-dwarf mass spectrum to derive upper limits on reducing bombardment epochs in Hadean-analog environments. We contrast the solar system scenario with varying initial volatile distributions due to extended primordial runaway greenhouse phases on protoplanets and the desiccation of smaller planetesimals by internal radiogenic heating. We find a decreasing rate of late-accreting reducing impacts with decreasing stellar mass. Young planets around stars ≤0.4Mexperience no impacts of sufficient mass to generate prebiotically relevant concentrations of reduced atmospheric compounds once their stars have reached the main sequence. For M-dwarf planets to not exceed Earth-like concentrations of volatiles, both planetesimals, and larger protoplanets must undergo extensive devolatilization processes and can typically emerge from long-lived magma ocean phases with sufficient atmophile content to outgas secondary atmospheres. Our results suggest that transiently reducing surface conditions on young rocky exoplanets are favored around FGK stellar types relative to M dwarfs.

     
    more » « less
  4. ABSTRACT

    The majority of binary star systems that host exoplanets will spend the first portion of their lives within a star-forming cluster that may drive dynamical evolution of the binary-planet system. We perform numerical simulations of S-type planets, with masses and orbital architecture analogous to the Solar system’s four gas giants, orbiting within the influence of a $0.5\, \mathrm{M}_{\odot }$ binary companion. The binary-planet system is integrated simultaneously with an embedded stellar cluster environment. ∼10 per cent of our planetary systems are destabilized when perturbations from our cluster environment drive the binary periastron towards the planets. This destabilization occurs despite all of our systems being initialized with binary orbits that would allow stable planets in the absence of the cluster. The planet–planet scattering triggered in our systems typically results in the loss of lower mass planets and the excitement of the eccentricities of surviving higher mass planets. Many of our planetary systems that go unstable also lose their binary companions prior to cluster dispersal and can therefore masquerade as hosts of eccentric exoplanets that have spent their entire histories as isolated stars. The cluster-driven binary orbital evolution in our simulations can also generate planetary systems with misaligned spin–orbit angles. This is typically done as the planetary system precesses as a rigid disc under the influence of an inclined binary, and those systems with the highest spin–orbit angles should often retain their binary companion and possess multiple surviving planets.

     
    more » « less
  5. Abstract

    In recent years, a paradigm shift has occurred in exoplanet science, wherein low-mass stars are increasingly viewed as a foundational pillar of the search for potentially habitable worlds in the solar neighborhood. However, the formation processes of this rapidly accumulating sample of planet systems are still poorly understood. Moreover, it is unclear whether tenuous primordial atmospheres around these Earth analogs could have survived the intense epoch of heightened stellar activity that is typical for low-mass stars. We present new simulations of in situ planet formation across the M-dwarf mass spectrum, and derive leftover debris populations of small bodies that might source delayed volatile delivery. We then follow the evolution of this debris with high-resolution models of real systems of habitable zone planets around low-mass stars such as TRAPPIST-1, Proxima Centauri, and TOI-700. While debris in the radial vicinity of the habitable zone planets is removed rapidly, thus making delayed volatile delivery highly unlikely, we find that material ubiquitously scattered into an exo-asteroid belt region during the planet-formation process represents a potentially lucrative reservoir of icy small bodies. Thus, the presence of external approximately Neptune–Saturn mass planets capable of dynamically perturbing these asteroids would be a sign that habitable zone worlds around low-mass stars might have avoided complete desiccation. However, we also find that such giant planets significantly limit the efficiency of asteroidal implantation during the planet-formation process. In the coming decade, long-baseline radial velocity studies and Roman Space Telescope microlensing observations will undoubtedly further constrain this process.

     
    more » « less