skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An introgressed gene causes meiotic drive in Neurospora sitophila
Meiotic drive elements cause their own preferential transmission following meiosis. In fungi, this phenomenon takes the shape of spore killing, and in the filamentous ascomycete Neurospora sitophila , the Sk-1 spore killer element is found in many natural populations. In this study, we identify the gene responsible for spore killing in Sk-1 by generating both long- and short-read genomic data and by using these data to perform a genome-wide association test. We name this gene Spk-1 . Through molecular dissection, we show that a single 405-nt-long open reading frame generates a product that both acts as a poison capable of killing sibling spores and as an antidote that rescues spores that produce it. By phylogenetic analysis, we demonstrate that the gene has likely been introgressed from the closely related species Neurospora hispaniola , and we identify three subclades of N. sitophila , one where Sk-1 is fixed, another where Sk-1 is absent, and a third where both killer and sensitive strain are found. Finally, we show that spore killing can be suppressed through an RNA interference-based genome defense pathway known as meiotic silencing by unpaired DNA. Spk-1 is not related to other known meiotic drive genes, and similar sequences are only found within Neurospora . These results shed light on the diversity of genes capable of causing meiotic drive, their origin and evolution, and their interaction with the host genome.  more » « less
Award ID(s):
2005295
PAR ID:
10282324
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
17
ISSN:
0027-8424
Page Range / eLocation ID:
e2026605118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meiotic drive is a non-Mendelian inheritance phenomenon where selfish genetic elements change gene transmission in their own favor. This phenomenon occurs in the fungus Neurospora crassa during spore killing. When a strain carrying a spore killer genetic element is crossed with a non-spore killing wild type strain, the cross will produce half viable and half inviable offspring. The N. crassa Sk-3 spore killer is found on Chromosome III. Sk-3 is one of the most studied meiotic drive elements in Neurospora fungi and it is thought to require a killer gene and a resistance gene for spore killing. While the killer gene has not been identified, recent work has isolated a mutation (rfk-2UV) that disrupts spore killing. Although this mutation has been mapped to Chromosome III, its exact location is not known. In this work, I investigate the role of one DNA interval in Sk-3-based spore killing. This DNA interval, referred to as v373, is thought to reside within or near rfk-2UV. My results will contribute to future efforts to identify the Sk-3 killer gene. 
    more » « less
  2. Meiotic drive elements, sometimes called selfish genes, are genetic elements that are passed on to their offspring more favorably than other genes. Meiotic drive elements have been observed in many organisms, including fungi of the Neurospora genus. Three different meiotic drive elements, called Spore killers, have been identified in Neurospora fungi. One of these Spore killers is called Spore killer 3 (Sk-3), and the molecular mechanism by which Sk-3 acts as a meiotic drive element is poorly understood. Previous work has identified a genetic locus within Sk-3 that may control spore killing. In this thesis, I investigate an interval of DNA within this locus called v375. Through gene deletion and spore killing assays, I show that deletion of v375 disrupts Sk-3-based spore killing in N. crassa. Possible explanations for why interval v375 is required for spore killing by Sk-3 are discussed. 
    more » « less
  3. Neurospora crassa is a well-known model organism for studying eukaryotic genetics, particularly non-Mendelian inheritance mechanisms such as meiotic drive. In N. crassa, meiotic drive can be observed in fungal spore killing, where Spore killer-3 (Sk-3) is a selfish genetic element transmitted to offspring through spore killing. Sk-3 is thought to contain two principal components: a killer (poison) gene and a resistance (antidote) gene. While the resistance gene (rsk) has been identified, the killer gene remains unknown. Building on previous research that identified a 1.3 kb DNA interval (i350) essential for Sk-3-based spore killing, I analyzed two subintervals, i382 and i400, to narrow down the functional components of the Sk-3 locus. Deletion of i382 does not disrupt spore killing and deletion of interval i400 partially disrupts spore killing but does not eliminate it. Future work should retest the i400 strains in spore killing assays, to determine if the partial spore killing phenotype can be detected in all crosses when larger numbers of rosettes are examined. The findings presented here help narrow down the search for the unknown poison gene involved in spore killing, which is a critical step towards understanding processes that allow for the evolution of Sk-3-type selfish genetic elements. 
    more » « less
  4. Some isolates of the fungus Neurospora crassa possess a chromosomal factor that causes spore killing, leading to death of ascospores. It has been shown that these chromosomal factors are genetic elements called spore killers. For example, if a cross is performed between a parent with an Sk-S (sensitive) allele and a parent with an Sk-K (killer) allele, the cross will produce half viable offspring and half inviable offspring, where the inviable half has been killed by spore killing. This phenomenon can be explained by meiotic drive, wherein a selfish gene disrupts the randomness of sexual transmission, favoring its own success. In this study, I focus on a Neurospora Spore killer known as Sk-3. Sk-3 is thought to possess both a killer element and a resistance element. The resistance element is rsk, a gene that keeps ascospores alive and viable when in the presence of the killer element. However, the mechanism by which the killer element kills ascospores is unknown. A major obstacle to studying the killing mechanism is that the identity of the Sk-3 killer element itself has remained elusive. My goal is to help identify the Sk-3 killer element. Preliminary results by others have narrowed the search to the left arm of Chromosome III. These results have also shown that deletion of a 1.3 kb DNA interval, called v350, causes loss of spore killing. This suggests that a regulatory element, or a hidden gene, may overlap with the v350 interval. To help determine why v350 deletion correlates with loss of spore killing, I investigated a related DNA interval, called v384. My results suggest that v384, like v350, is required for spore killing. 
    more » « less
  5. Neurospora fungi are found around the world. The species N. crassa is a popular model for use in genetics research. N. crassa produces sexual spores, called ascospores, during mating between strains of opposite mating types. N. crassa also produces spore sacs called asci, and each ascus typically contains eight viable ascospores. However, some Neurospora fungi carry selfish genetic elements called Spore killers, and when a strain carrying a Spore killer mates with a spore killing-susceptible strain, asci contain four black viable ascospores and four white inviable ascospores. In this project, I investigated a Spore killer called Sk-3. To act as a selfish genetic element, Sk-3 is thought to require at least two genes, a poison gene and an antidote gene. The Sk-3 antidote gene (rsk) has been identified, but the poison gene has not. The purpose of this study is to help identify the location of the poison gene. To do this, I deleted two DNA intervals (i383 and i394) from a location of the Neurospora genome that may harbor the poison gene. My results indicate that deletion of i383 eliminates spore killing while deletion of i394 has no effect on spore killing. The possibility that i394 overlaps with the poison gene is discussed. 
    more » « less