skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust parallel decision-making in neural circuits with nonlinear inhibition
An elemental computation in the brain is to identify the best in a set of options and report its value. It is required for inference, decision-making, optimization, action selection, consensus, and foraging. Neural computing is considered powerful because of its parallelism; however, it is unclear whether neurons can perform this max-finding operation in a way that improves upon the prohibitively slow optimal serial max-finding computation (which takes ∼ N ⁡ log ( N ) time for N noisy candidate options) by a factor of N, the benchmark for parallel computation. Biologically plausible architectures for this task are winner-take-all (WTA) networks, where individual neurons inhibit each other so only those with the largest input remain active. We show that conventional WTA networks fail the parallelism benchmark and, worse, in the presence of noise, altogether fail to produce a winner when N is large. We introduce the nWTA network, in which neurons are equipped with a second nonlinearity that prevents weakly active neurons from contributing inhibition. Without parameter fine-tuning or rescaling as N varies, the nWTA network achieves the parallelism benchmark. The network reproduces experimentally observed phenomena like Hick’s law without needing an additional readout stage or adaptive N-dependent thresholds. Our work bridges scales by linking cellular nonlinearities to circuit-level decision-making, establishes that distributed computation saturating the parallelism benchmark is possible in networks of noisy, finite-memory neurons, and shows that Hick’s law may be a symptom of near-optimal parallel decision-making with noisy input.  more » « less
Award ID(s):
1934568
PAR ID:
10282348
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
41
ISSN:
0027-8424
Page Range / eLocation ID:
25505 to 25516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Winner-Take-All (WTA) refers to the neural operation that selects a (typically small) group of neurons from a large neuron pool. It is conjectured to underlie many of the brain’s fundamental computational abilities.However, not much is known about the robustness of a spike-based WTA network to the inherent randomness of the input spike trains. In this work, we consider a spike-based k–WTA model where in n randomly generated input spike trains compete with each other based on their underlying firing rates, and k winners are supposed to be selected. We slot the time evenly with each time slot of length 1ms, and model then input spike trains as n independent Bernoulli processes. We analytically characterize the minimum waiting time needed so that a target minimax decision accuracy (success probability) can be reached.We first derive an information-theoretic lower bound on the decision time. We show that to guarantee a (minimax) decision error≤δ(whereδ∈(0,1)), the waiting time of any WTA circuit is at least((1−δ) log(k(n−k) + 1)−1)TR,whereR ⊆(0,1) is a finite set of rates, and TR is a difficulty parameter of a WTA task with respect to setRfor independent input spike trains.Additionally,TR is independent ofδ,n, andk. We then design a simple WTA circuit whose waiting time isO((log(1δ)+ logk(n−k))TR), provided that the local memory of each output neuron is sufficiently long. It turns out that for any fixed δ, this decision time is order-optimal (i.e., it 2 matches the above lower bound up to a multiplicative constant factor) in terms of its scaling inn,k, and TR. 
    more » « less
  2. Winner-take-all (WTA) refers to the neural operation that selects a (typically small) group of neurons from a large neuron pool. It is conjectured to underlie many of the brain’s fundamental computational abilities. However, not much is known about the robustness of a spike-based WTA network to the inherent randomness of the input spike trains.In this work, we consider a spike-based k–WTA model wherein n randomly generated input spike trains compete with each other based on their underlying firing rates and k winners are supposed to be selected. We slot the time evenly with each time slot of length 1 ms and model then input spike trains as n independent Bernoulli processes. We analytically characterize the minimum waiting time needed so that a target minimax decision accuracy (success probability) can be reached. We first derive an information-theoretic lower bound on the waiting time. We show that to guarantee a (minimax) decision error≤δ(whereδ∈(0,1)), the waiting time of any WTA circuit is at least ((1−δ)log(k(n−k)+1)−1)TR,where R⊆(0,1)is a finite set of rates and TR is a difficulty parameter of a WTA task with respect to set R for independent input spike trains. Additionally,TR is independent of δ,n,and k. We then design a simple WTA circuit whose waiting time is 2524L. Su, C.-J. Chang, and N. Lynch O((log(1δ)+logk(n−k))TR),provided that the local memory of each output neuron is sufficiently long. It turns out that for any fixed δ, this decision time is order-optimal (i.e., it matches the above lower bound up to a multiplicative constant factor) in terms of its scaling inn,k, and TR. 
    more » « less
  3. The notion that a neuron transmits the same set of neurotransmitters at all of its post-synaptic connections, typically known as Dale's law, is well supported throughout the majority of the brain and is assumed in almost all theoretical studies investigating the mechanisms for computation in neuronal networks. Dale's law has numerous functional implications in fundamental sensory processing and decision-making tasks, and it plays a key role in the current understanding of the structure-function relationship in the brain. However, since exceptions to Dale's law have been discovered for certain neurons and because other biological systems with complex network structure incorporate individual units that send both positive and negative feedback signals, we investigate the functional implications of network model dynamics that violate Dale's law by allowing each neuron to send out both excitatory and inhibitory signals to its neighbors. We show how balanced network dynamics, in which large excitatory and inhibitory inputs are dynamically adjusted such that input fluctuations produce irregular firing events, are theoretically preserved for a single population of neurons violating Dale's law. We further leverage this single-population network model in the context of two competing pools of neurons to demonstrate that effective decision-making dynamics are also produced, agreeing with experimental observations from honeybee dynamics in selecting a food source and artificial neural networks trained in optimal selection. Through direct comparison with the classical two-population balanced neuronal network, we argue that the one-population network demonstrates more robust balanced activity for systems with less computational units, such as honeybee colonies, whereas the two-population network exhibits a more rapid response to temporal variations in network inputs, as required by the brain. We expect this study will shed light on the role of neurons violating Dale's law found in experiment as well as shared design principles across biological systems that perform complex computations. 
    more » « less
  4. Neuromorphic computing is a promising candidate for beyond-von Neumann computer architectures, featuring low power consumption and high parallelism. Lateral inhibition and winner-take-all (WTA) features play a crucial role in neuronal competition of the nervous system as well as neuromorphic hardwares. The domain wall - magnetic tunnel junction (DWMTJ) neuron is an emerging spintronic artificial neuron device exhibiting intrinsic lateral inhibition. In this paper we show that lateral inhibition parameters modulate the neuron firing statistics in a DW-MTJ neuron array, thus emulating soft-winner-take-all (WTA) and firing group selection. 
    more » « less
  5. Blohm, Gunnar (Ed.)
    Neural circuits consist of many noisy, slow components, with individual neurons subject to ion channel noise, axonal propagation delays, and unreliable and slow synaptic transmission. This raises a fundamental question: how can reliable computation emerge from such unreliable components? A classic strategy is to simply average over a population ofNweakly-coupled neurons to achieve errors that scale as 1 / N . But more interestingly, recent work has introduced networks of leaky integrate-and-fire (LIF) neurons that achieve coding errors that scalesuperclassicallyas 1/Nby combining the principles of predictive coding and fast and tight inhibitory-excitatory balance. However, spike transmission delays preclude such fast inhibition, and computational studies have observed that such delays can cause pathological synchronization that in turn destroys superclassical coding performance. Intriguingly, it has also been observed in simulations that noise can actuallyimprovecoding performance, and that there exists some optimal level of noise that minimizes coding error. However, we lack a quantitative theory that describes this fascinating interplay between delays, noise and neural coding performance in spiking networks. In this work, we elucidate the mechanisms underpinning this beneficial role of noise by derivinganalyticalexpressions for coding error as a function of spike propagation delay and noise levels in predictive coding tight-balance networks of LIF neurons. Furthermore, we compute the minimal coding error and the associated optimal noise level, finding that they grow as power-laws with the delay. Our analysis reveals quantitatively how optimal levels of noise can rescue neural coding performance in spiking neural networks with delays by preventing the build up of pathological synchrony without overwhelming the overall spiking dynamics. This analysis can serve as a foundation for the further study of precise computation in the presence of noise and delays in efficient spiking neural circuits. 
    more » « less