skip to main content


Title: Effect of Si content on the uniaxial tensile behavior of Mo-Si solid solution alloys
Award ID(s):
1709318
NSF-PAR ID:
10282399
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Acta Materialia
Volume:
207
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
116654
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The origin in deshielding of 29 Si NMR chemical shifts in R 3 Si–X, where X = H, OMe, Cl, OTf, [CH 6 B 11 X 6 ], toluene, and O X (O X = surface oxygen), as well as i Pr 3 Si + and Mes 3 Si + were studied using DFT methods. At the M06-L/6-31G(d,p) level of theory the geometry optimized structures agree well with those obtained experimentally. The trends in 29 Si NMR chemical shift also reproduce experimental trends; i Pr 3 Si–H has the most shielded 29 Si NMR chemical shift and free i Pr 3 Si + or isolable Mes 3 Si + have the most deshielded 29 Si NMR chemical shift. Natural localized molecular orbital (NLMO) analysis of the contributions to paramagnetic shielding ( σ p ) in these compounds shows that Si–R (R = alkyl, H) bonding orbitals are the major contributors to deshielding in this series. The Si–R bonding orbitals are coupled to the empty p-orbital in i Pr 3 Si + or Mes 3 Si + , or to the orbital in R 3 Si–X. This trend also applies to surface bound R 3 Si–O X . This model also explains chemical shift trends in recently isolated t Bu 2 SiH 2 + , t BuSiH 2 + , and SiH 3 + that show more shielded 29 Si NMR signals than R 3 Si + species. There is no correlation between isotropic 29 Si NMR chemical shift and charge at silicon. 
    more » « less