skip to main content


Title: Dilatancy, shear jamming, and a generalized jamming phase diagram of frictionless sphere packings
Granular packings display the remarkable phenomenon of dilatancy, wherein their volume increases upon shear deformation. Conventional wisdom and previous results suggest that dilatancy, also being the related phenomenon of shear-induced jamming, requires frictional interactions. Here, we show that the occurrence of isotropic jamming densities ϕ j above the minimal density (or the J-point density) ϕ J leads both to the emergence of shear-induced jamming and dilatancy in frictionless packings. Under constant pressure shear, the system evolves into a steady-state at sufficiently large strains, whose density only depends on the pressure and is insensitive to the initial jamming density ϕ j . In the limit of vanishing pressure, the steady-state exhibits critical behavior at ϕ J . While packings with different ϕ j values display equivalent scaling properties under compression, they exhibit striking differences in rheological behaviour under shear. The yield stress under constant volume shear increases discontinuously with density when ϕ j > ϕ J , contrary to the continuous behaviour in generic packings that jam at ϕ J . Our results thus lead to a more coherent, generalised picture of jamming in frictionless packings, which also have important implications on how dilatancy is understood in the context of frictional granular matter.  more » « less
Award ID(s):
1916877
NSF-PAR ID:
10282575
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
11
ISSN:
1744-683X
Page Range / eLocation ID:
3121 to 3127
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dense suspensions of particles in viscous liquid often demonstrate the striking phenomenon of abrupt shear thickening, where their viscosity increases strongly with increase of the imposed stress or shear rate. In this work, discrete-particle simulations accounting for short-range hydrodynamic, repulsive, and contact forces are performed to simulate flow of shear thickening bidisperse suspensions, with the packing parameters of large-to-small particle radius ratio δ = 3 and large particle fraction ζ = 0.15, 0.50, and 0.85. The simulations are carried out for volume fractions 0.54 ≤ ϕ ≤ 0.60 and a wide range of shear stresses. The repulsive forces, of magnitude F R , model the effects of surface charge and electric double-layer overlap, and result in shear thinning at small stress, with shear thickening beginning at stresses σ ∼ F R a −2 . A crossover scaling analysis used to describe systems with more than one thermodynamic critical point has recently been shown to successfully describe the experimentally-observed shear thickening behavior in suspensions. The scaling theory is tested here on simulated shear thickening data of the bidisperse mixtures, and also on nearly monodisperse suspensions with δ = 1.4 and ζ = 0.50. Presenting the viscosity in terms of a universal crossover scaling function between the frictionless and frictional maximum packing fractions collapses the viscosity for most of the suspensions studied. Two scaling regimes having different exponents are observed. The scaling analysis shows that the second normal stress difference N 2 and the particle pressure Π also collapse on their respective curves, with the latter featuring a different exponent from the viscosity and normal stress difference. The influence of the fraction of frictional contacts, one of the parameters of the scaling analysis, and its dependence on the packing parameters are also presented. 
    more » « less
  2. In submerged sandy slopes, soil is frequently eroded as a combination of two main mechanisms: breaching, which refers to the retrogressive failure of a steep slope forming a turbidity current, and instantaneous sliding wedges, known as shear failure, that also contribute to shape the morphology of the soil deposit. Although there are several modes of failures, in this paper we investigate breaching and shear failures of granular columns using the two-fluid approach. The numerical model is first applied to simulate small-scale granular column collapses (Rondonet al.,Phys. Fluids, vol. 23, 2011, 073301) with different initial volume fractions to study the role of the initial conditions in the main flow dynamics. For loosely packed granular columns, the porous medium initially contracts and the resulting positive pore pressure leads to a rapid collapse. Whereas in initially dense-packing columns, the porous medium dilates and negative pore pressure is generated stabilizing the granular column, which results in a slow collapse. The proposed numerical approach shows good agreement with the experimental data in terms of morphology and excess of pore pressure. Numerical results are extended to a large-scale application (Weij, doctoral dissertation, 2020, Delft University of Technology; Alhaddadet al.,J. Mar. Sci. Eng., vol. 11, 2023, 560) known as the breaching process. This phenomenon may occur naturally at coasts or on dykes and levees in rivers but it can also be triggered by humans during dredging operations. The results indicate that the two-phase flow model correctly predicts the dilative behaviour and the subsequent turbidity currents associated with the breaching process.

     
    more » « less
  3. In a recent paper (Zhao et al., Phys Rev X, 2022, 12: 031,021), we reported experimental observations of “ultrastable” states in a shear-jammed granular system subjected to small-amplitude cyclic shear. In such states, all the particle positions and contact forces are reproduced after each shear cycle so that a strobed image of the stresses and particle positions appears static. In the present work, we report further analyses of data from those experiments to characterize both global and local responses of ultrastable states within a shear cycle, not just the strobed dynamics. We find that ultrastable states follow a power-law relation between shear modulus and pressure with an exponentβ≈ 0.5, reminiscent of critical scaling laws near jamming. We also examine the evolution of contact forces measured using photoelasticimetry. We find that there are two types of contacts: non-persistent contacts that reversibly open and close; and persistent contacts that never open and display no measurable sliding. We show that the non-persistent contacts make a non-negligible contribution to the emergent shear modulus. We also analyze the spatial correlations of the stress tensor and compare them to the predictions of a recent theory of the emergent elasticity of granular solids, the Vector Charge Theory of Granular mechanics and dynamics (VCTG) (Nampoothiri et al., Phys Rev Lett, 2020, 125: 118,002). We show that our experimental results can be fit well by VCTG, assuming uniaxial symmetry of the contact networks. The fits reveal that the response of the ultrastable states to additional applied stress is substantially more isotropic than that of the original shear-jammed states. Our results provide important insight into the mechanical properties of frictional granular solids created by shear.

     
    more » « less
  4. Available data on insulating, semiconducting, and metallic solids verify our new model that incorporates steady-state heat flow into a macroscopic, thermodynamic description of solids, with agreement being best for isotropic examples. Our model is based on: (1) mass and energy conservation; (2) Fourier’s law; (3) Stefan–Boltzmann’s law; and (4) rigidity, which is a large, yet heretofore neglected, energy reservoir with no counterpart in gases. To account for rigidity while neglecting dissipation, we consider the ideal, limiting case of a perfectly frictionless elastic solid (PFES) which does not generate heat from stress. Its equation-of-state is independent of the energetics, as in the historic model. We show that pressure-volume work (PdV) in a PFES arises from internal interatomic forces, which are linked to Young’s modulus (Ξ) and a constant (n) accounting for cation coordination. Steady-state conditions are adiabatic since heat content (Q) is constant. Because average temperature is also constant and the thermal gradient is fixed in space, conditions are simultaneously isothermal: Under these dual restrictions, thermal transport properties do not enter into our analysis. We find that adiabatic and isothermal bulk moduli (B) are equal. Moreover, Q/V depends on temperature only. Distinguishing deformation from volume changes elucidates how solids thermally expand. These findings lead to simple descriptions of the two specific heats in solids: ∂ln(cP)/∂P = −1/B; cP = nΞ times thermal expansivity divided by density; cP = cVnΞ/B. Implications of our validated formulae are briefly covered. 
    more » « less
  5. Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems—cornstarch in glycerol and silica spheres in glycerol—the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes due to a crossover between frictionless isotropic jamming and frictional shear jamming, with different critical exponents. The material-specific behavior due to the microscale particle interactions is incorporated into a scaling variable governing the proximity to shear jamming, that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition.

     
    more » « less