Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Discreteparticle simulations of bidisperse shear thickening suspensions are reported. The work considers two packing parameters, the largetosmall particle radius ratio ranging from [Formula: see text] (nearly monodisperse) to [Formula: see text], and the large particle fraction of the total solid loading with values [Formula: see text], 0.5, and 0.85. Particlescale simulations are performed over a broad range of shear stresses using a simulation model for spherical particles accounting for shortrange lubrication forces, frictional interaction, and repulsion between particles. The variation of rheological properties and the maximum packing fraction [Formula: see text] with shear stress [Formula: see text] are reported. At a fixed volume fraction [Formula: see text], bidispersity decreases the suspension relative viscosity [Formula: see text], where [Formula: see text] is the suspension viscosity and [Formula: see text] is the suspending fluid viscosity, over the entire range of shear stresses studied. However, under low shear stress conditions, the suspension exhibits an unusual rheological behavior: the minimum viscosity does not occur as expected at [Formula: see text], but instead decreases with further increase of [Formula: see text] to [Formula: see text]. The second normal stress difference [Formula: see text] acts similarly. This behavior is caused by particles ordering into a layered structure, as is also reflected by the zero slope with respect to time of the meansquare displacement in the velocity gradient direction. The relative viscosity [Formula: see text] of bidisperse ratedependent suspensions can be predicted by a power law linking it to [Formula: see text], [Formula: see text] in both low and high shear stress regimes. The agreement between the power law and experimental data from literature demonstrates that the model captures well the effect of particle size distribution, showing that viscosity roughly collapses onto a single master curve when plotted against the reduced volume fraction [Formula: see text].more » « less

Dense suspensions of particles in viscous liquid often demonstrate the striking phenomenon of abrupt shear thickening, where their viscosity increases strongly with increase of the imposed stress or shear rate. In this work, discreteparticle simulations accounting for shortrange hydrodynamic, repulsive, and contact forces are performed to simulate flow of shear thickening bidisperse suspensions, with the packing parameters of largetosmall particle radius ratio δ = 3 and large particle fraction ζ = 0.15, 0.50, and 0.85. The simulations are carried out for volume fractions 0.54 ≤ ϕ ≤ 0.60 and a wide range of shear stresses. The repulsive forces, of magnitude F R , model the effects of surface charge and electric doublelayer overlap, and result in shear thinning at small stress, with shear thickening beginning at stresses σ ∼ F R a −2 . A crossover scaling analysis used to describe systems with more than one thermodynamic critical point has recently been shown to successfully describe the experimentallyobserved shear thickening behavior in suspensions. The scaling theory is tested here on simulated shear thickening data of the bidisperse mixtures, and also on nearly monodisperse suspensions with δ = 1.4 and ζ = 0.50. Presenting the viscosity in terms of a universal crossover scaling function between the frictionless and frictional maximum packing fractions collapses the viscosity for most of the suspensions studied. Two scaling regimes having different exponents are observed. The scaling analysis shows that the second normal stress difference N 2 and the particle pressure Π also collapse on their respective curves, with the latter featuring a different exponent from the viscosity and normal stress difference. The influence of the fraction of frictional contacts, one of the parameters of the scaling analysis, and its dependence on the packing parameters are also presented.more » « less

null (Ed.)Granular packings display the remarkable phenomenon of dilatancy, wherein their volume increases upon shear deformation. Conventional wisdom and previous results suggest that dilatancy, also being the related phenomenon of shearinduced jamming, requires frictional interactions. Here, we show that the occurrence of isotropic jamming densities ϕ j above the minimal density (or the Jpoint density) ϕ J leads both to the emergence of shearinduced jamming and dilatancy in frictionless packings. Under constant pressure shear, the system evolves into a steadystate at sufficiently large strains, whose density only depends on the pressure and is insensitive to the initial jamming density ϕ j . In the limit of vanishing pressure, the steadystate exhibits critical behavior at ϕ J . While packings with different ϕ j values display equivalent scaling properties under compression, they exhibit striking differences in rheological behaviour under shear. The yield stress under constant volume shear increases discontinuously with density when ϕ j > ϕ J , contrary to the continuous behaviour in generic packings that jam at ϕ J . Our results thus lead to a more coherent, generalised picture of jamming in frictionless packings, which also have important implications on how dilatancy is understood in the context of frictional granular matter.more » « less