skip to main content


Title: A 1D Gaussian Function for Efficient Generation of Plane Waves in 1D, 2D, and 3D FDTD
A 1D Gaussian expression is derived and used as the 1D E/H incident field in the TF/SF formulation to efficiently generate plane waves in 1D, 2D, and 3D FDTD simulations. The analytic expression is simple, and it eliminates the need for computational resources to store and compute the E/H-field incident arrays and their associated absorbing boundaries. FDTD simulation results at the magic time-step in 1D, 2D, and 3D FDTD show good correlation between plane waves generated by the 1D analytic Gaussian function vs. those generated by 1D FDTD incident arrays.  more » « less
Award ID(s):
1816542
NSF-PAR ID:
10282577
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cocrystallizations of diboronic acids [1,3‐benzenediboronic acid (1,3‐bdba), 1,4‐benzenediboronic acid (1,4‐bdba) and 4,4’‐biphenyldiboronic acid (4,4’‐bphdba)] and bipyridines [1,2‐bis(4‐pyridyl)ethylene (bpe) and 1,2‐bis(4‐pyridyl)ethane (bpeta)] generated the hydrogen‐bonded 1 : 2 cocrystals [(1,4‐bdba)(bpe)2] (1), [(1,4‐bdba)(bpeta)2] (2), [(1,3‐bdba)(bpe)2(H2O)2] (3) and [(1,3‐bdba)(bpeta)2(H2O)] (4), wherein 1,3‐bdba involved hydrated assemblies. The linear extended 4,4’‐bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'‐bphdba)(bpe)] (5) and [(4,4'‐bphdba‐me)(bpeta)] (6). For 6, a hemiester was generated by an in‐situ linker transformation. Single‐crystal X‐ray diffraction revealed all structures to be sustained by B(O)−H⋅⋅⋅N, B(O)−H⋅⋅⋅O, Ow−H⋅⋅⋅O, Ow−H⋅⋅⋅N, C−H⋅⋅⋅O, C−H⋅⋅⋅N, π⋅⋅⋅π, and C−H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen‐bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D‐to‐2D single‐crystal‐to‐single‐crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.

     
    more » « less
  2. Abstract

    A plasmonic flow reactor, consisting of thin Au film at exits of monolithic anodized aluminum oxide (AAO) membranes under LED illumination is demonstrated. The system shows over 200% quantum efficiency (QE) for peroxide activation and the ability to limit to single oxidation reaction by controlling residence time with flow rate and pore geometry. Periodic pore arrays (20–200 nm diameter) with 25 nm thick Au on AAO are modeled by finite‐difference time‐domain (FDTD) simulations and predicted largest E‐field enhancements for the larger 200 nm pore diameters. Peroxide activation, as measured by O2generation is most efficient with a 200 nm pore diameter system under 523 nm LED illumination. The optimal wavelength falls near the absorption peak of Au@AAO with 200 nm pore diameter suggesting that hot electron generated from gold plasmonic response is the primary mechanism for activation of H2O2. QE for gold plasmonic flow system calculated from O2generation experiments is as high as 250%, which indicates a mechanism of hot‐electron activation of peroxide that leaves a still energetic hot‐electron to catalytically activate multiple reactions. The formation of Au surface oxides that are catalytically active in dark is also observed and must be accounted for in Au plasmonic photochemical studies.

     
    more » « less
  3. The M2internal tide field contains waves of various baroclinic modes and various horizontal propagation directions. This paper presents a technique for decomposing the sea surface height (SSH) field of the multimodal multidirectional internal tide. The technique consists of two steps: first, different baroclinic modes are decomposed by two-dimensional (2D) spatial filtering, utilizing their different horizontal wavelengths; second, multidirectional waves in each mode are decomposed by 2D plane wave analysis. The decomposition technique is demonstrated using the M2internal tide field simulated by the MITgcm. This paper focuses on a region lying off the U.S. West Coast ranging 20°–50°N, 220°–245°E. The lowest three baroclinic modes are separately resolved from the internal tide field; each mode is further decomposed into five waves of arbitrary propagation directions in the horizontal. The decomposed fields yield unprecedented details on the internal tide’s generation and propagation, which cannot be observed in the harmonically fitted field. The results reveal that the mode-1 M2internal tide in the study region is dominantly from the Hawaiian Ridge to the west but also generated locally at the Mendocino Ridge and continental slope. The mode-2 and mode-3 M2internal tides are generated at isolated seamounts, as well as at the Mendocino Ridge and continental slope. The Mendocino Ridge radiates both southbound and northbound M2internal tides for all three modes. Their propagation distances decrease with increasing mode number: mode-1 waves can travel over 2000 km, while mode-3 waves can only be tracked for 300 km. The decomposition technique may be extended to other tidal constituents and to the global ocean.

     
    more » « less
  4. Topological crystalline insulators (TCIs) are new materials with metallic surface states protected by crystal symmetry. The properties of molecular beam epitaxy grown SnTe TCI on SrTiO3(001) are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, low‐energy and reflection high‐energy electron diffraction, X‐ray diffraction, Auger electron spectroscopy, and density functional theory. Initially, SnTe (111) and (001) surfaces are observed; however, the (001) surface dominates with increasing film thickness. The films grow island‐by‐island with the [011] direction of SnTe (001) islands rotated up to 7.5° from SrTiO3[010]. Microscopy reveals that this growth mechanism induces defects on different length scales and dimensions that affect the electronic properties, including point defects (0D); step edges (1D); grain boundaries between islands rotated up to several degrees; edge‐dislocation arrays (2D out‐of‐plane) that serve as periodic nucleation sites for pit growth (2D in‐plane); and screw dislocations (3D). These features cause variations in the surface electronic structure that appear in STM images as standing wave patterns and a nonuniform background superimposed on atomic features. The results indicate that both the growth process and the scanning probe tip can be used to induce symmetry breaking defects that may disrupt the topological states in a controlled way.

     
    more » « less
  5. The in-plane orientation-dependent electrical and optical properties of two-dimensional (2D) anisotropic materials attract significant attention because of the intriguing underlying physics. However, this feature limits their further development in polarization-independent applications such as refractive index sensors and light absorbers. In this paper, polarization-independent optical properties of black phosphorous (BP) metadevices are achieved by the design of a single-layer pattern of 2D anisotropic material. Finite-difference time-domain (FDTD) simulation results indicate that the absorption spectrum remains unchanged as the polarization angle of the incident light varies from 0° to 360°. The performance of the BP metadevices when used as refractive index sensors is also studied. The results show that the polarization-independent BP sensors exhibit high sensitivity and figures of merit (FOMs). This work opens up the possibility of fabricating optically polarization-independent devices based on a single-layer pattern of 2D anisotropic material.

     
    more » « less