Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of –COH rocking and –C=C, –C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck–Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique “W”-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump–probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics.
more »
« less
How does tautomerization affect the excited-state dynamics of an amino acid-derivatized corrole?
Abstract In the first two decades of the XXI century, corroles have emerged as an important class of porphyrinoids for photonics and biomedical photonics. In comparison with porphyrins, corroles have lower molecular symmetry and higher electron density, which leads to uniquely complementary properties. In macrocycles of free-base corroles, for example, three protons are distributed among four pyrrole nitrogens. It results in distinct tautomers that have different thermodynamic energies. Herein, we focus on the excited-state dynamics of a corrole modified with l -phenylalanine. The tautomerization in the singlet-excited state occurs in the timescales of about 10–100 picoseconds and exhibits substantial kinetic isotope effects. It, however, does not discernably affect nanosecond deactivation of the photoexcited corrole and its basic photophysics. Nevertheless, this excited-state tautomerization dynamics can strongly affect photoinduced processes with comparable or shorter timescales, considering the 100-meV energy differences between the tautomers in the excited state. The effects on the kinetics of charge transfer and energy transfer, initiated prior to reaching the equilibrium thermalization of the excited-state tautomer population, can be indeed substantial. Such considerations are crucially important in the design of systems for artificial photosynthesis and other forms of energy conversion and charge transduction.
more »
« less
- Award ID(s):
- 1800602
- PAR ID:
- 10282589
- Date Published:
- Journal Name:
- Photosynthesis Research
- Volume:
- 148
- Issue:
- 1-2
- ISSN:
- 0166-8595
- Page Range / eLocation ID:
- 67 to 76
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Copper and silver tritolylcorroles (TTC) are symmetrically functionalized to carry two tetracyanobutadiene (TCBD) entities via [2+2] cycloaddition‐retroeletrocyclization reaction involving ethynyl functionalized corroles with an electron acceptor, tetracyanoethylene (TCNE) in excellent yields, as the first examples of corrole‐TCBD push‐pull systems. The strong push‐pull effect resulted in charge polarization in the ground state resulting in a considerable hypsochromic shift of the spectrum extending it into the near‐IR region. Electrochemical studies coupled with computational studies revealed considerable interactions between the two TCBD entities via the corrole π‐system and the degree of such interactions was found to depend on the metal ion present in the corrole cavity. Energy considerations suggested charge transfer (CT) from the S2or vibrationally hot S1state but not the relaxed S1state in the case of CuTTC(TCBD)2while CT to occur from all these states in the case of AgTTC(TCBD)2. Additionally, the high‐energy CT states populate the low‐lying triplet states. Systematic femtosecond pump‐probe studies provided the ultimate proof for the occurrence of excited CT as a function of excitation wavelength followed by the efficient population of the triplet states. The present study brings out the significance of charge transfer in efficiently populating the triplet states in rather unusual copper and silver corroles carrying two TCBD entities.more » « less
-
Liquid junctions in electrochemical cells introduce potentials that can strongly affect measurements. Such liquid-junction potential errors can exceed 100 mV. In the analysis of charge-transfer thermodynamics, error differences of 100 mV can have substantial impact on the interpretations. Discussion herein outlines an approach for eliminating the effects of liquid-junction potentials from charge-transfer analysis.more » « less
-
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focussing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how they affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.more » « less
-
Intermediate donor–acceptor electronic coupling leads to a brilliant fluorescence behaviour. Charge transfer (CT) is key for molecular photonics, governing the optical properties of chromophores comprising electron-rich and electron-deficient components. In photoexcited dyes with an acceptor– donor–acceptor or donor–acceptor–donor architecture, CT breaks their quadrupolar symmetry and yields dipolar structures manifesting pronounced solvatochromism. Herein, we explore the effects of electronic coupling through biaryl linkers on the excited-state symmetry breaking of such hybrid dyes composed of an electron-rich core, i.e., 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP), and pyrene substituents that can act as electron acceptors. Experimental and theoretical studies reveal that strengthening the donor–acceptor electronic coupling decreases the CT rates and the propensity for symmetry breaking. We ascribe this unexpected result to effects of electronic coupling on the CT thermodynamics, which in its turn affects the CT kinetics. In cases of intermediate electronic coupling, the pyrene-DHPP conjugates produce fluorescence spectra, spreading over the whole visible range, that in addition to the broad CT emission, show bands from the radiative deactivation of the locally excited states of the donor and the acceptors. Because the radiative deactivation of the low-lying CT states is distinctly slow, fluorescence from upper locally excited states emerge leading to the observed anti- Kasha behaviour. As a result, these dyes exhibit white fluorescence. In addition to demonstrating the multifaceted nature of the effects of electronic coupling on CT dynamics, these chromophores can act as broad-band light sources with practical importance for imaging and photonics.more » « less
An official website of the United States government

