Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4–8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small,more »
Role of intramolecular hydrogen bonds in promoting electron flow through amino acid and oligopeptide conjugates
Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala) 4 . Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala) 4 linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor–acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a “scorpion-shaped” molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NH … O=C–NH … O=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor–acceptor assemblies linked by long flexible bridges as well as insights more »
- Award ID(s):
- 1800602
- Publication Date:
- NSF-PAR ID:
- 10282593
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 11
- Page Range or eLocation-ID:
- e2026462118
- ISSN:
- 0027-8424
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electron transfer (ET) in donor–bridge–acceptor (DBA) compounds depends strongly on the structural and electronic properties of the bridge. Among the bridges that support donor–acceptor conjugation, alkyne bridges have attractive and unique properties: they are compact, possess linear structure permitting access to high symmetry DBA molecules, and allow torsional motion of D and A, especially for longer bridges. We report conformation dependent electron transfer dynamics in a set of novel DBA compounds featuring butadiyne (C4) bridge, N -isopropyl-1,8-napthalimide (NAP) acceptors, and donors that span a range of reduction potentials (trimethyl silane (Si-C4-NAP), phenyl (Ph-C4-NAP), and dimethyl aniline (D-C4-NAP)). Transient mid-IR absorption spectra of the CC bridge stretching modes, transient spectra in the visible range, and TD-DFT calculations were used to decipher the ET mechanisms. We found that the electronic excited state energies and, especially, the transition dipoles (S 0 → S n ) depend strongly on the dihedral angle ( θ ) between D and A and the frontier orbital symmetry, offering an opportunity to photo-select particular excited states with specific ranges of dihedral angles by exciting at chosen wavelengths. For example, excitation of D-C4-NAP at 400 nm predominantly prepares an S 1 excited state in the planar conformations ( θmore »
-
Electron donor–acceptor co-crystals are receiving increasing interest because of their many useful optoelectronic properties. While the steady-state properties of many different co-crystals have been characterized, very few studies have addressed how crystal morphology affects the dynamics of charge transfer (CT) exciton formation, migration, and decay, which are often critical to their performance in device structures. Here we show that co-crystallization of a pyrene (Pyr) electron donor with either N , N ′-bis(2,6-diisopropylphenyl)- or N , N ′-bis(3′-pentyl)-perylene-3,4:9,10-bis(dicarboximide) (diisoPDI or C 5 PDI) electron acceptors, respectively, yields mixed π-stacked Pyr–diisoPDI or Pyr–C 5 PDI donor–acceptor co-crystals. Femtosecond transient absorption microscopy is used to determine the CT exciton dynamics in these single crystals. Fitting the data to a one-dimensional charge transfer CT exciton diffusion model reveals a diffusion constant that is two orders of magnitude higher in the Pyr–diisoPDI co-crystal compared to the Pyr–C 5 PDI co-crystal. By correlating the co-crystal structures to their distinct excited-state dynamics, the effects of each mixed stacked structure on the exciton dynamics and the mechanisms of CT exciton diffusion are elucidated.
-
Efficient photosynthetic energy conversion requires quantitative, light-driven formation of high-energy, charge-separated states. However, energies of high-lying excited states are rarely extracted, in part because the congested density of states in the excited-state manifold leads to rapid deactivation. Conventional photosystem designs promote electron transfer (ET) by polarizing excited donor electron density toward the acceptor (“one-way” ET), a form of positive design. Curiously, negative design strategies that explicitly avoid unwanted side reactions have been underexplored. We report here that electronic polarization of a molecular chromophore can be used as both a positive and negative design element in a light-driven reaction. Intriguingly, prudent engineering of polarized excited states can steer a “U-turn” ET—where the excited electron density of the donor is initially pushed away from the acceptor—to outcompete a conventional one-way ET scheme. We directly compare one-way vs. U-turn ET strategies via a linked donor–acceptor (DA) assembly in which selective optical excitation produces donor excited states polarized either toward or away from the acceptor. Ultrafast spectroscopy of DA pinpoints the importance of realizing donor singlet and triplet excited states that have opposite electronic polarizations to shut down intersystem crossing. These results demonstrate that oppositely polarized electronically excited states can be employed to steermore »
-
A time‐convolutionless master equation approach for computing state‐to‐state rates was developed in which the coupling between states depends on the nuclear coordinates. This approach incorporates a fully quantum‐mechanical treatment of both the nuclear and electronic degrees of freedom and recovers the well‐known Marcus expression in the semiclassical limit. A significant breakthrough was made in using this approach by tying it to a fully ab initio quantum chemical approach for determining the diabatic states and electron‐phonon coupling terms, allowing unprecedented accuracy and utility for computing state‐to‐state electronic transition rates. The Weinstein group at the University of Sheffield reported recently upon a series of donor‐bridge‐acceptor (DBA) molecular triads whose electron‐transfer (ET) pathways can be radically changed by infrared light excitation of specific intramolecular vibrations. Once the diabatic states and couplings are determined, the TCLME approach is used to compute the time‐correlation functions and state‐to‐state golden‐rule rates.