skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of symmetry on magnetohydrodynamic mixed convection flow in a vertical duct
Magnetohydrodynamic convection in a downward flow of liquid metal in a vertical duct is investigated experimentally and numerically. It is known from earlier studies that in a certain range of parameters, the flow exhibits high-amplitude pulsations of temperature in the form of isolated bursts or quasi-regular fluctuations. This study extends the analysis while focusing on the effects of symmetry introduced by twosided rather than one-sided wall heating. It is found that the temperature pulsations are robust physical phenomena appearing for both types of heating and various inlet conditions. At the same time, the properties, typical amplitude, and range of existence in the parametric space are very different at the symmetric and asymmetric heating. The obtained data show good agreement between computations and experiments and allow us to explain the physical mechanisms causing the pulsation behavior.  more » « less
Award ID(s):
1803730
PAR ID:
10282596
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physics of fluids
Volume:
32
ISSN:
1070-6631
Page Range / eLocation ID:
094106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The standard theory of pulsations deals with the frequencies and growth rates of infinitesimal perturbations in a stellar model. Modes which are calculated to be linearly driven should increase their amplitudes exponentially with time; the fact that nearly constant amplitudes are usually observed is evidence that nonlinear mechanisms inhibit the growth of finite amplitude pulsations. Models predict that the mass of DAV convection zones is very sensitive to temperature (i.e., MCZ∝T−90eff) leading to the possibility that even "small amplitude" pulsators may experience significant nonlinear effects. In particular, the outer turning point of finite-amplitude g-mode pulsations can vary with the local surface temperature, producing a reflected wave that is slightly out of phase with that required for a standing wave. This can lead to a lack of coherence of the mode and a reduction in its global amplitude. We compute the size of this effect for specific examples and discuss the results in the context of Kepler and K2 observations. 
    more » « less
  2. Abstract In the collisionless plasmas of radiatively inefficient accretion flows, heating and acceleration of ions and electrons are not well understood. Recent studies in the gyrokinetic limit revealed the importance of incorporating both the compressive and Alfvénic cascades when calculating the partition of dissipated energy between the plasma species. In this paper, we use a covariant analytic model of the accretion flow to explore the impact of compressive and Alfvénic heating, Coulomb collisions, compressional heating, and radiative cooling on the radial temperature profiles of ions and electrons. We show that, independent of the partition of heat between the plasma species, even a small fraction of turbulent energy dissipated to the electrons makes their temperature scale with a virial profile and the ion-to-electron temperature ratio smaller than in the case of pure Coulomb heating. In contrast, the presence of compressive cascades makes this ratio larger because compressive turbulent energy is channeled primarily into the ions. We calculate the ion-to-electron temperature in the inner accretion flow for a broad range of plasma properties, mass accretion rates, and black hole spins and show that it ranges between 5 ≲Ti/Te≲ 40. We provide a physically motivated expression for this ratio that can be used to calculate observables from simulations of black hole accretion flows for a wide range of conditions. 
    more » « less
  3. Ion holes refer to the phase-space structures where the trapped ion density is lower at the center than at the rim. These structures are commonly observed in collisionless plasmas, such as the Earth’s magnetosphere. This paper investigates the role of multiple parameters in the generation and structure of ion holes. We find that the ion-to-electron temperature ratio and the background plasma distribution function of the species play a pivotal role in determining the physical plausibility of ion holes. It is found that the range of width and amplitude that defines the existence of ion holes splits into two separate domains as the ion temperature exceeds that of the electrons. Additionally, the present study reveals that the ion holes formed in a plasma with ion temperature higher than that of the electrons have a hump at its center. 
    more » « less
  4. Abstract Pc3 range frequency (22–100 mHz) auroral pulsations often occur at daytime high latitudes, equatorward of the cusp/cleft and typically map to the dayside outer magnetosphere. In this paper we present simultaneous observations of compressional Pc3 magnetic pulsations in the dayside outer magnetosphere that occurred in direct association with daytime Pc3 auroral pulsations at South Pole Station (−74.4° magnetic latitude). The pulsations were almost identical at the two locations, and their correlation was clearest when the magnetospheric pulsations were highly monochromatic. Lower‐band chorus waves and keV electron fluxes were also modulated in the Pc3 range, likely by the compressional magnetic pulsations. The common Pc3 frequency in the magnetosphere and aurora matched well with the predicted frequency of upstream ultralow frequency waves. These results provide the first compelling evidence for the direct dayside outer magnetosphere‐ionosphere linkage between upstream‐generated compressional Pc3 waves, Pc3 range modulations of chorus waves and keV electrons, and Pc3 auroral pulsations. 
    more » « less
  5. He, Jian_Jun (Ed.)
    Geomagnetic Ultra Low Frequency (ULF) are terrestrial manifestations of the propagation of very low frequency magnetic fluid waves in the magnetosphere, and it is critical to develop near real-time space weather products to monitor these geomagnetic disturbances. A wavelet-based index is described in this paper and applied to study geomagnetic ULF pulsations observed in Antarctica and their magnetically conjugate locations in West Greenland. Results showed that (1) the index is effective for identification of pulsation events in the Pc4–Pc5 frequency range, including transient events, and measures important characteristics of ULF pulsations in both the temporal and frequency domains. (2) Comparison between conjugate locations reveals the similarities and differences between ULF pulsations in northern and southern hemispheres during solstice conditions, when the largest asymmetries are expected. Results also showed that the geomagnetic pulsations at conjugate locations respond differently according to the Interplanetary Magnetic Field condition, magnetic field topology, magnetic latitude of the observation, and other conditions. The actual magnetospheric and ionospheric configurations and driving conditions in the case need to be further studied. 
    more » « less