skip to main content


Title: Exploration of Acoustic and Lexical Cues for the INTERSPEECH 2020 Computational Paralinguistic Challenge
In this paper, we investigate various acoustic features and lexical features for the INTERSPEECH 2020 Computational Paralinguistic Challenge. For the acoustic analysis, we show that the proposed FV-MFCC feature is very promising, which has very strong prediction power on its own, and can also provide complementary information when fused with other acoustic features. For the lexical representation, we find that the corpus-dependent TF.IDF feature is by far the best representation. We also explore several model fusion techniques to combine different modalities together, and propose novel SVM models to aggregate the chunk-level predictions to the narrative-level predictions based on the chunk-level decision functionals. Finally we discuss the potential for improving prediction by combining the lexical and acoustic modalities together, and we find that fusion of lexical and acoustic modalities do not lead to consistent improvements over elderly Arousal, but substantially improve over the Valence. Our methods significantly outperform the official baselines on the test set in the participated Mask and Elderly Sub-challenges. We obtain an UAR of 75.1%, 54.3%, and 59.0% on the Mask, Elderly Arousal and Valence prediction tasks respectively.  more » « less
Award ID(s):
2034791
NSF-PAR ID:
10282648
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
INTERSPEECH 2020
Page Range / eLocation ID:
2092 to 2096
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Regularization plays a key role in improving the prediction of emotions using attributes such as arousal, valence and dominance. Regularization is particularly important with deep neural networks (DNNs), which have millions of parameters. While previous studies have reported competitive performance for arousal and dominance, the prediction results for valence using acoustic features are significantly lower. We hypothesize that higher regularization can lead to better results for valence. This study focuses on exploring the role of dropout as a form of regularization for valence, suggesting the need for higher regularization. We analyze the performance of regression models for valence, arousal and dominance as a function of the dropout probability. We observe that the optimum dropout rates are consistent for arousal and dominance. However, the optimum dropout rate for valence is higher. To understand the need for higher regularization for valence, we perform an empirical analysis to explore the nature of emotional cues conveyed in speech. We compare regression models with speakerdependent and speaker-independent partitions for training and testing. The experimental evaluation suggests stronger speaker dependent traits for valence. We conclude that higher regularization is needed for valence to force the network to learn global patterns that generalize across speakers. 
    more » « less
  2. Chunk-level speech emotion recognition (SER) is a common modeling scheme to obtain better recognition performance than sentence-level formulations. A key open question is the role of lexical boundary information in the process of splitting a sentence into small chunks. Is there any benefit in providing precise lexi- cal boundary information to segment the speech into chunks (e.g., word-level alignments)? This study analyzes the role of lexical boundary information by exploring alternative segmentation strategies for chunk-level SER. We compare six chunk-level segmentation strategies that either consider word-level alignments or traditional time-based segmentation methods by varying the number of chunks and the duration of the chunks. We conduct extensive experiments to evaluate these chunk-level segmentation approaches using multiples corpora, and multiple acoustic feature sets. The results show a minor contribution of the word-level timing boundaries, where centering the chunks around words does not lead to significant performance gains. Instead, the critical factor to effectively segment a sentence into data chunks is to define the number of chunks according to the number of spoken words in the sentence. 
    more » « less
  3. Understanding neural function often requires multiple modalities of data, including electrophysiogical data, imaging techniques, and demographic surveys. In this paper, we introduce a novel neurophysiological model to tackle major challenges in modeling multimodal data. First, we avoid non-alignment issues between raw signals and extracted, frequency-domain features by addressing the issue of variable sampling rates. Second, we encode modalities through “cross-attention” with other modalities. Lastly, we utilize properties of our parent transformer architecture to model long-range dependencies between segments across modalities and assess intermediary weights to better understand how source signals affect prediction. We apply our Multimodal Neurophysiological Transformer (MNT) to predict valence and arousal in an existing open-source dataset. Experiments on non-aligned multimodal time-series show that our model performs similarly and, in some cases, outperforms existing methods in classification tasks. In addition, qualitative analysis suggests that MNT is able to model neural influences on autonomic activity in predicting arousal. Our architecture has the potential to be fine-tuned to a variety of downstream tasks, including for BCI systems. 
    more » « less
  4. In this paper, we propose a deep multimodal fusion network to fuse multiple modalities (face, iris, and fingerprint) for person identification. The proposed deep multimodal fusion algorithm consists of multiple streams of modality-specific Convolutional Neural Networks (CNNs), which are jointly optimized at multiple feature abstraction levels. Multiple features are extracted at several different convolutional layers from each modality-specific CNN for joint feature fusion, optimization, and classification. Features extracted at different convolutional layers of a modality-specific CNN represent the input at several different levels of abstract representations. We demonstrate that an efficient multimodal classification can be accomplished with a significant reduction in the number of network parameters by exploiting these multi-level abstract representations extracted from all the modality-specific CNNs. We demonstrate an increase in multimodal person identification performance by utilizing the proposed multi-level feature abstract representations in our multimodal fusion, rather than using only the features from the last layer of each modality-specific CNNs. We show that our deep multi-modal CNNs with multimodal fusion at several different feature level abstraction can significantly outperform the unimodal representation accuracy. We also demonstrate that the joint optimization of all the modality-specific CNNs excels the score and decision level fusions of independently optimized CNNs. 
    more » « less
  5. In this paper, we propose to employ a bank of modality-dedicated Convolutional Neural Networks (CNNs), fuse, train, and optimize them together for person classification tasks. A modality-dedicated CNN is used for each modality to extract modality-specific features. We demonstrate that, rather than spatial fusion at the convolutional layers, the fusion can be performed on the outputs of the fully-connected layers of the modality-specific CNNs without any loss of performance and with significant reduction in the number of parameters. We show that, using multiple CNNs with multimodal fusion at the feature-level, we significantly outperform systems that use unimodal representation. We study weighted feature, bilinear, and compact bilinear feature-level fusion algorithms for multimodal biometric person identification. Finally, We propose generalized compact bilinear fusion algorithm to deploy both the weighted feature fusion and compact bilinear schemes. We provide the results for the proposed algorithms on three challenging databases: CMU Multi-PIE, BioCop, and BIOMDATA. 
    more » « less