skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: On the early evolution of massive star clusters: the case of cloud D1 and its embedded cluster in NGC 5253
ABSTRACT We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio, and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253. We show that a large turbulent pressure in the central zones of D1 cluster may cause individual wind-blown bubbles to reach pressure confinement before encountering their neighbours. In this case, stellar winds energy is added to the hot shocked wind pockets of gas around individual massive stars that leads them to meet and produce a cluster wind in time-scales less than 105 yr. In order to inhibit the possibility of cloud dispersal, or the early negative star formation feedback, one should account for mass loading that may come, for example, from pre-main-sequence (PMS) low-mass stars through photoevaporation of their protostellar discs. Mass loading at a rate in excess of 8 × 10−9 M⊙ yr−1 per each PMS star is required to extend the hidden star cluster phase in this particular cluster. In this regime, the parental cloud remains relatively unperturbed, while pockets of molecular, photoionized and hot gas coexist within the star-forming region. Nevertheless, the most likely scenario for cloud D1 and its embedded cluster is that the hot shocked winds around individual massive stars should merge at an age of a few million of years when the PMS star protostellar discs vanish and mass loading ceases that allows a cluster to form a global wind.  more » « less
Award ID(s):
2006433
NSF-PAR ID:
10282681
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
494
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
97 to 107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In compact and dense star-forming clouds a global star cluster wind could be suppressed. In this case stellar feedback is unable to expel the leftover gas from the cluster. Young massive stars remain embedded in a dense residual gas and stir it by moving in the gravitational well of the system. Here we present a self-consistent model for the molecular gas distribution in such young, enshrouded stellar clusters. It is assumed that the cloud collapse terminates and the star formation ceases when a balance between the turbulent pressure and gravity and between the turbulent energy dissipation and regeneration rates is established. These conditions result in an equation that determines the residual gas density distribution that, in turn, allows one to determine the other characteristics of the leftover gas and the star formation efficiency. It is shown that our model predictions are in good agreement with several observationally determined properties of cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253 and its embedded cluster.

     
    more » « less
  2. ABSTRACT

    One of the key mysteries of star formation is the origin of the stellar initial mass function (IMF). The IMF is observed to be nearly universal in the Milky Way and its satellites, and significant variations are only inferred in extreme environments, such as the cores of massive elliptical galaxies and the Central Molecular Zone. In this work, we present simulations from the STARFORGE project that are the first cloud-scale radiation-magnetohydrodynamic simulations that follow individual stars and include all relevant physical processes. The simulations include detailed gas thermodynamics, as well as stellar feedback in the form of protostellar jets, stellar radiation, winds, and supernovae. In this work, we focus on how stellar radiation, winds, and supernovae impact star-forming clouds. Radiative feedback plays a major role in quenching star formation and disrupting the cloud; however, the IMF peak is predominantly set by protostellar jet physics. We find that the effect of stellar winds is minor, and supernovae ‘occur too late’ to affect the IMF or quench star formation. We also investigate the effects of initial conditions on the IMF. We find that the IMF is insensitive to the initial turbulence, cloud mass, and cloud surface density, even though these parameters significantly shape the star formation history of the cloud, including the final star formation efficiency. Meanwhile, the characteristic stellar mass depends weakly on metallicity and the interstellar radiation field, which essentially set the average gas temperature. Finally, while turbulent driving and the level of magnetization strongly influence the star formation history, they only influence the high-mass slope of the IMF.

     
    more » « less
  3. null (Ed.)
    ABSTRACT The initial mass function (IMF) of stars is a key quantity affecting almost every field of astrophysics, yet it remains unclear what physical mechanisms determine it. We present the first runs of the STAR FORmation in Gaseous Environments project, using a new numerical framework to follow the formation of individual stars in giant molecular clouds (GMCs) using the gizmo code. Our suite includes runs with increasingly complex physics, starting with isothermal ideal magnetohydrodynamics (MHD) and then adding non-isothermal thermodynamics and protostellar outflows. We show that without protostellar outflows the resulting stellar masses are an order of magnitude too high, similar to the result in the base isothermal MHD run. Outflows disrupt the accretion flow around the protostar, allowing gas to fragment and additional stars to form, thereby lowering the mean stellar mass to a value similar to that observed. The effect of jets upon global cloud evolution is most pronounced for lower mass GMCs and dense clumps, so while jets can disrupt low-mass clouds, they are unable to regulate star formation in massive GMCs, as they would turn an order unity fraction of the mass into stars before unbinding the cloud. Jets are also unable to stop the runaway accretion of massive stars, which could ultimately lead to the formation of stars with masses ${\gt}500\, \mathrm{M}_{\rm \odot }$. Although we find that the mass scale set by jets is insensitive to most cloud parameters (i.e. surface density, virial parameter), it is strongly dependent on the momentum loading of the jets (which is poorly constrained by observations) as well as the temperature of the parent cloud, which predicts slightly larger IMF variations than observed. We conclude that protostellar jets play a vital role in setting the mass scale of stars, but additional physics are necessary to reproduce the observed IMF. 
    more » « less
  4. ABSTRACT

    We investigate the formation of dense stellar clumps in a suite of high-resolution cosmological zoom-in simulations of a massive, star-forming galaxy at z ∼ 2 under the presence of strong quasar winds. Our simulations include multiphase ISM physics from the Feedback In Realistic Environments (FIRE) project and a novel implementation of hyper-refined accretion disc winds. We show that powerful quasar winds can have a global negative impact on galaxy growth while in the strongest cases triggering the formation of an off-centre clump with stellar mass ${\rm M}_{\star }\sim 10^{7}\, {\rm M}_{\odot }$, effective radius ${\rm R}_{\rm 1/2\, \rm Clump}\sim 20\, {\rm pc}$, and surface density $\Sigma _{\star } \sim 10^{4}\, {\rm M}_{\odot }\, {\rm pc}^{-2}$. The clump progenitor gas cloud is originally not star-forming, but strong ram pressure gradients driven by the quasar winds (orders of magnitude stronger than experienced in the absence of winds) lead to rapid compression and subsequent conversion of gas into stars at densities much higher than the average density of star-forming gas. The AGN-triggered star-forming clump reaches ${\rm SFR} \sim 50\, {\rm M}_{\odot }\, {\rm yr}^{-1}$ and $\Sigma _{\rm SFR} \sim 10^{4}\, {\rm M}_{\odot }\, {\rm yr}^{-1}\, {\rm kpc}^{-2}$, converting most of the progenitor gas cloud into stars in ∼2 Myr, significantly faster than its initial free-fall time and with stellar feedback unable to stop star formation. In contrast, the same gas cloud in the absence of quasar winds forms stars over a much longer period of time (∼35 Myr), at lower densities, and losing spatial coherency. The presence of young, ultra-dense, gravitationally bound stellar clumps in recently quenched galaxies could thus indicate local positive feedback acting alongside the strong negative impact of powerful quasar winds, providing a plausible formation scenario for globular clusters.

     
    more » « less
  5. Abstract Massive protostars attain high luminosities as they are actively accreting and the radiation pressure exerted on the gas in the star’s atmosphere may launch isotropic high-velocity winds. These winds will collide with the surrounding gas producing shock-heated ( T ∼ 10 7 K) tenuous gas that adiabatically expands and pushes on the dense gas that may otherwise be accreted. We present a suite of 3D radiation-magnetohydrodynamic simulations of the collapse of massive prestellar cores and include radiative feedback from the stellar and dust-reprocessed radiation fields, collimated outflows, and, for the first time, isotropic stellar winds to model how these processes affect the formation of massive stars. We find that winds are initially launched when the massive protostar is still accreting and its wind properties evolve as the protostar contracts to the main sequence. Wind feedback drives asymmetric adiabatic wind bubbles that have a bipolar morphology because the dense circumstellar material pinches the expansion of the hot shock-heated gas. We term this the “wind tunnel effect.” If the core is magnetized, wind feedback is less efficient at driving adiabatic wind bubbles initially because magnetic tension delays their growth. We find that wind feedback eventually quenches accretion onto ∼30 M ⊙ protostars that form from the collapse of the isolated cores simulated here. Hence, our results suggest that ≳30 M ⊙ stars likely require larger-scale dynamical inflows from their host cloud to overcome wind feedback. Additionally, we discuss the implications of observing adiabatic wind bubbles with Chandra while the massive protostars are still highly embedded. 
    more » « less