Abstract Stellar winds contain enough energy to easily disrupt the parent cloud surrounding a nascent star cluster, and for this reason they have long been considered candidates for regulating star formation. However, direct observations suggest most wind power is lost, and Lancaster et al. recently proposed that this is due to efficient mixing and cooling processes. Here we simulate star formation with wind feedback in turbulent, self-gravitating clouds, extending our previous work. Our simulations cover clouds with an initial surface density of 10 2 –10 4 M ⊙ pc −2 and show that star formation and residual gas dispersal are complete within two to eight initial cloud freefall times. The “efficiently cooled” model for stellar wind bubble evolution predicts that enough energy is lost for the bubbles to become momentum-driven; we find that this is satisfied in our simulations. We also find that wind energy losses from turbulent, radiative mixing layers dominate losses by “cloud leakage” over the timescales relevant for star formation. We show that the net star formation efficiency (SFE) in our simulations can be explained by theories that apply wind momentum to disperse cloud gas, allowing for highly inhomogeneous internal cloud structure. For very dense clouds, the SFE is similar to those observed in extreme star-forming environments. Finally, we find that, while self-pollution by wind material is insignificant in cloud conditions with moderate density (only ≲10 −4 of the stellar mass originated in winds), our simulations with conditions more typical of a super star cluster have star particles that form with as much as 1% of their mass in wind material.
more »
« less
Molecular Gas Properties in Young Stellar Clusters with a Suppressed Star Cluster Wind
Abstract In compact and dense star-forming clouds a global star cluster wind could be suppressed. In this case stellar feedback is unable to expel the leftover gas from the cluster. Young massive stars remain embedded in a dense residual gas and stir it by moving in the gravitational well of the system. Here we present a self-consistent model for the molecular gas distribution in such young, enshrouded stellar clusters. It is assumed that the cloud collapse terminates and the star formation ceases when a balance between the turbulent pressure and gravity and between the turbulent energy dissipation and regeneration rates is established. These conditions result in an equation that determines the residual gas density distribution that, in turn, allows one to determine the other characteristics of the leftover gas and the star formation efficiency. It is shown that our model predictions are in good agreement with several observationally determined properties of cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253 and its embedded cluster.
more »
« less
- Award ID(s):
- 2006433
- PAR ID:
- 10397243
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 944
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L32
- Size(s):
- Article No. L32
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mass segregation is seen in many star clusters, but whether massive stars form in the center of a cluster or migrate there dynamically is still debated.N-body simulations show that early dynamical mass segregation is possible when sub-clusters merge to form a dense core with a small crossing time. However, the effect of gas dynamics on both the formation and dynamics of the stars could inhibit the formation of the dense core. We aim to study the dynamical mass segregation of star cluster models that include gas dynamics and selfconsistently form stars from the dense substructure in the gas. Our models use the TORCH framework, which is based on AMUSE and includes stellar and magnetized gas dynamics, as well as stellar evolution and feedback from radiation, stellar winds, and supernovae. Our models consist of three star clusters forming from initial turbulent spherical clouds of mass 104, 105, 106M⊙and radius 11.7 pc that have final stellar masses of 3.6 × 103M⊙, 6.5 × 104M⊙, and 8.9 × 105M⊙, respectively. There is no primordial mass segregation in the model by construction. All three clusters become dynamically mass segregated at early times via collapse confirming that this mechanism occurs within sub-clusters forming directly out of the dense substructure in the gas. The dynamics of the embedded gas and stellar feedback do not inhibit the collapse of the cluster. We find that each model cluster becomes mass segregated within 2 Myr of the onset of star formation, reaching the levels observed in young clusters in the Milky Way. However, we note that the exact values are highly time-variable during these early phases of evolution. Massive stars that segregate to the center during core collapse are likely to be dynamically ejected, a process that can decrease the overall level of mass segregation again.more » « less
-
ABSTRACT Stars form in dense, clustered environments, where feedback from newly formed stars eventually ejects the gas, terminating star formation and leaving behind one or more star clusters. Using the STARFORGE simulations, it is possible to simulate this process in its entirety within a molecular cloud, while explicitly evolving the gas radiation and magnetic fields and following the formation of individual, low-mass stars. We find that individual star-formation sites merge to form ever larger structures, while still accreting gas. Thus clusters are assembled through a series of mergers. During the cluster assembly process, a small fraction of stars are ejected from their clusters; we find no significant difference between the mass distribution of the ejected stellar population and that of stars inside clusters. The star-formation sites that are the building blocks of clusters start out mass segregated with one or a few massive stars at their centre. As they merge the newly formed clusters maintain this feature, causing them to have mass-segregated substructures without themselves being centrally condensed. The merged clusters relax to a centrally condensed mass-segregated configuration through dynamical interactions between their members, but this process does not finish before feedback expels the remaining gas from the cluster. In the simulated runs, the gas-free clusters then become unbound and breakup. We find that turbulent driving and a periodic cloud geometry can significantly reduce clustering and prevent gas expulsion. Meanwhile, the initial surface density and level of turbulence have little qualitative effect on cluster evolution, despite the significantly different star formation histories.more » « less
-
null (Ed.)ABSTRACT We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio, and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253. We show that a large turbulent pressure in the central zones of D1 cluster may cause individual wind-blown bubbles to reach pressure confinement before encountering their neighbours. In this case, stellar winds energy is added to the hot shocked wind pockets of gas around individual massive stars that leads them to meet and produce a cluster wind in time-scales less than 105 yr. In order to inhibit the possibility of cloud dispersal, or the early negative star formation feedback, one should account for mass loading that may come, for example, from pre-main-sequence (PMS) low-mass stars through photoevaporation of their protostellar discs. Mass loading at a rate in excess of 8 × 10−9 M⊙ yr−1 per each PMS star is required to extend the hidden star cluster phase in this particular cluster. In this regime, the parental cloud remains relatively unperturbed, while pockets of molecular, photoionized and hot gas coexist within the star-forming region. Nevertheless, the most likely scenario for cloud D1 and its embedded cluster is that the hot shocked winds around individual massive stars should merge at an age of a few million of years when the PMS star protostellar discs vanish and mass loading ceases that allows a cluster to form a global wind.more » « less
-
The mode of star formation that results in the formation of globular clusters and young massive clusters is difficult to constrain through observations. We present models of massive star cluster formation using the TORCHframework, which uses the Astrophysical MUltipurpose Software Environment (AMUSE) to couple distinct multi-physics codes that handle star formation, stellar evolution and dynamics, radiative transfer, and magnetohydrodynamics. We upgraded TORCHby implementing the N-body code PETAR, thereby enabling TORCHto handle massive clusters forming from 106M⊙clouds with ≥105individual stars. We present results from TORCHsimulations of star clusters forming from 104, 105, and 106M⊙turbulent spherical gas clouds (named M4, M5, M6) of radiusR= 11.7 pc. We find that star formation is highly efficient and becomes more so at a higher cloud mass and surface density. For M4, M5, and M6 with initial surface densities 2.325 × 101,2,3M⊙pc−2, after a free-fall time oftff= 6.7,2.1,0.67 Myr, we find that ∼30%, 40%, and 60% of the cloud mass has formed into stars, respectively. The end of simulation-integrated star formation efficiencies for M4, M5, and M6 areϵ⋆ = M⋆/Mcloud = 36%, 65%, and 85%. Observations of nearby clusters similar in mass and size to M4 have instantaneous star formation efficiencies ofϵinst ≤ 30%, which is slightly lower than the integrated star formation efficiency of M4. The M5 and M6 models represent a different regime of cluster formation that is more appropriate for the conditions in starburst galaxies and gas-rich galaxies at high redshift, and that leads to a significantly higher efficiency of star formation. We argue that young massive clusters build up through short efficient bursts of star formation in regions that are sufficiently dense (Σ ≥ 102M⊙pc−2) and massive (Mcloud≥ 105M⊙). In such environments, stellar feedback from winds and radiation is not strong enough to counteract the gravity from gas and stars until a majority of the gas has formed into stars.more » « less
An official website of the United States government
