We investigate the gas-phase photo-oxidation of 2-ethoxyethanol (2-EE) initiated by the OH radical with a focus on its autoxidation pathways. Gas-phase autoxidation intramolecular H-shifts followed by O2 additionhas recently been recognized as a major atmospheric chemical pathway that leads to the formation of highly oxygenated organic molecules (HOMs), which are important precursors for secondary organic aerosols (SOAs). Here, we examine the gas-phase oxidation pathways of 2-EE, a model compound for glycol ethers, an important class of volatile organic compounds (VOCs) used in volatile chemical products (VCPs). Both experimental and computational techniques are applied to analyze the photochemistry of the compound. We identify oxidation products from both bimolecular and autoxidation reactions from chamber experiments at varied HO2 levels and provide estimations of rate coefficients and product branching ratios for key reaction pathways. The H-shift processes of 2-EE peroxy radicals (RO2) are found to be sufficiently fast to compete with bimolecular reactions under modest NO/HO2 conditions. More than 30% of the produced RO2 are expected to undergo at least one H-shift for conditions typical of modern summer urban atmosphere, where RO2 bimolecular lifetime is becoming >10 s, which implies the potential for glycol ether oxidation to produce considerable amounts of HOMs at reduced NOx levels and elevated temperature. Understanding the gas-phase autoxidation of glycol ethers can help fill the knowledge gap in the formation of SOA derived from oxygenated VOCs emitted from VCP sources.
more »
« less
Efficient alkane oxidation under combustion engine and atmospheric conditions
Abstract Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O 2 . This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NO X , which typically rapidly terminates autoxidation in urban areas, the studied C 6 –C 10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.
more »
« less
- Award ID(s):
- 1801897
- PAR ID:
- 10282692
- Date Published:
- Journal Name:
- Communications Chemistry
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2399-3669
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Exposure to anthropogenic atmospheric aerosol is a major health issue, causing several million deaths per year worldwide. The oxidation of aromatic hydrocarbons from traffic and wood combustion is an important anthropogenic source of low-volatility species in secondary organic aerosol, especially in heavily polluted environments. It is not yet established whether the formation of anthropogenic secondary organic aerosol involves mainly rapid autoxidation, slower sequential oxidation steps or a combination of the two. Here we reproduced a typical urban haze in the ‘Cosmics Leaving Outdoor Droplets’ chamber at the European Organization for Nuclear Research and observed the dynamics of aromatic oxidation products during secondary organic aerosol growth on a molecular level to determine mechanisms underlying their production and removal. We demonstrate that sequential oxidation is required for substantial secondary organic aerosol formation. Second-generation oxidation decreases the products’ saturation vapour pressure by several orders of magnitude and increases the aromatic secondary organic aerosol yields from a few percent to a few tens of percent at typical atmospheric concentrations. Through regional modelling, we show that more than 70% of the exposure to anthropogenic organic aerosol in Europe arises from second-generation oxidation.more » « less
-
The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) model was established on the Comprehensive Air quality Model with extensions (CAMx) to process Secondary Organic Aerosol (SOA) formation by capturing multiphase reactions of hydrocarbons (HCs) in regional scales. SOA growth was simulated using a wide range of anthropogenic HCs including ten aromatics and linear alkanes with different carbon-lengths. The atmospheric processes of biogenic HCs (isoprene, terpenes, and sesquiterpene) were simulated for the major oxidation paths (ozone, OH radicals, and nitrate radicals) to predict day and night SOA formation. The UNIPAR model streamlined the multiphase partitioning of the lumping species originating from semi-explicitly predicted gas products and their heterogeneous chemistry to form non-volatile oligomeric species in both organic aerosol and inorganic aqueous phase. The CAMx-UNIPAR model predicted SOA formation at four ground urban sites (San Jose, Sacramento, Fresno, and Bakersfield) in California, United States during wintertime 2018. Overall, the simulated mass concentrations of the total organic matter, consisting of primary OA (POA) and SOA, showed a good agreement with the observations. The simulated SOA mass in the urban areas of California was predominated by alkane and terpene. During the daytime, low-volatile products originating from the autoxidation of long-chain alkanes considerably contributed to the SOA mass. In contrast, a significant amount of nighttime SOA was produced by the reaction of terpene with ozone or nitrate radicals. The spatial distributions of anthropogenic SOA associated with aromatic and alkane HCs were noticeably affected by the southward wind direction owing to the relatively long lifetime of their atmospheric oxidation, whereas those of biogenic SOA were nearly insensitive to wind direction. During wintertime 2018, the impact of inorganic aerosol hygroscopicity on the total SOA budget was not evident because of the small contribution of aromatic and isoprene products that are hydrophilic and reactive in the inorganic aqueous phase. However, an increased isoprene SOA mass was predicted during the wet periods, although its contribution to the total SOA was little.more » « less
-
null (Ed.)Abstract. Highly oxygenated organic molecules (HOMs) contributesubstantially to the formation and growth of atmospheric aerosol particles,which affect air quality, human health and Earth's climate. HOMs are formedby rapid, gas-phase autoxidation of volatile organic compounds (VOCs) suchas α-pinene, the most abundant monoterpene in the atmosphere. Due totheir abundance and low volatility, HOMs can play an important role innew-particle formation (NPF) and the early growth of atmospheric aerosols,even without any further assistance of other low-volatility compounds suchas sulfuric acid. Both the autoxidation reaction forming HOMs and theirNPF rates are expected to be strongly dependent ontemperature. However, experimental data on both effects are limited.Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoorDroplets) chamber at CERN to address this question. In this study, we showthat a decrease in temperature (from +25 to −50 ∘C) results ina reduced HOM yield and reduced oxidation state of the products, whereas theNPF rates (J1.7 nm) increase substantially.Measurements with two different chemical ionization mass spectrometers(using nitrate and protonated water as reagent ion, respectively) providethe molecular composition of the gaseous oxidation products, and atwo-dimensional volatility basis set (2D VBS) model provides their volatilitydistribution. The HOM yield decreases with temperature from 6.2 % at 25 ∘C to 0.7 % at −50 ∘C. However, there is a strongreduction of the saturation vapor pressure of each oxidation state as thetemperature is reduced. Overall, the reduction in volatility withtemperature leads to an increase in the nucleation rates by up to 3orders of magnitude at −50 ∘C compared with 25 ∘C. Inaddition, the enhancement of the nucleation rates by ions decreases withdecreasing temperature, since the neutral molecular clusters have increasedstability against evaporation. The resulting data quantify how the interplaybetween the temperature-dependent oxidation pathways and the associatedvapor pressures affect biogenic NPF at the molecularlevel. Our measurements, therefore, improve our understanding of purebiogenic NPF for a wide range of tropospherictemperatures and precursor concentrations.more » « less
-
null (Ed.)Abstract. Gas-phase autoxidation of organics can generate highly oxygenated organic molecules (HOMs) and thus increase secondary organic aerosol production and enable new-particle formation.Here we present a new implementation of the volatility basis set (VBS) that explicitly resolves peroxy radical (RO2) products formed via autoxidation.The model includes a strong temperature dependence for autoxidation as well as explicit termination of RO2, including reactions with NO, HO2, and other RO2.The RO2 cross-reactions can produce dimers (ROOR).We explore the temperature and NOx dependence of this chemistry, showing that temperature strongly influences the intrinsic volatility distribution and that NO can suppress autoxidation under conditions typically found in the atmosphere.more » « less
An official website of the United States government

