The coronavirus disease 2019 (COVID-19) pandemic has placed epidemic modeling at the forefront of worldwide public policy making. Nonetheless, modeling and forecasting the spread of COVID-19 remains a challenge. Here, we detail three regional-scale models for forecasting and assessing the course of the pandemic. This work demonstrates the utility of parsimonious models for early-time data and provides an accessible framework for generating policy-relevant insights into its course. We show how these models can be connected to each other and to time series data for a particular region. Capable of measuring and forecasting the impacts of social distancing, these models highlight the dangers of relaxing nonpharmaceutical public health interventions in the absence of a vaccine or antiviral therapies. 
                        more » 
                        « less   
                    
                            
                            Methods, Challenges, and Practical Issues of COVID-19 Projection: A Data Science Perspective
                        
                    
    
            The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed epidemic modeling at the center of attention of public policymaking. Predicting the severity and speed of transmission of COVID-19 is crucial to resource management and developing strategies to deal with this epidemic. Based on the available data from current and previous outbreaks, many efforts have been made to develop epidemiological models, including statistical models, computer simulations, mathematical representations of the virus and its impacts, and many more. Despite their usefulness, modeling and forecasting the spread of COVID-19 remains a challenge. In this article, we give an overview of the unique features and issues of COVID-19 data and how they impact epidemic modeling and projection. In addition, we illustrate how various models could be connected to each other. Moreover, we provide new data science perspectives on the challenges of COVID-19 forecasting, from data collection, curation, and validation to the limitations of models, as well as the uncertainty of the forecast. Finally, we discuss some data science practices that are crucial to more robust and accurate epidemic forecasting. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1916204
- PAR ID:
- 10282697
- Date Published:
- Journal Name:
- Journal of Data Science
- Volume:
- 19
- Issue:
- 2
- ISSN:
- 1680-743X
- Page Range / eLocation ID:
- 219 to 242
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatiotemporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting. The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when compared with more complicated models. We are currently integrating our methods as a part of our weekly forecasts that we provide state and federal authorities.more » « less
- 
            The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world significantly. Modeling the trend of infection and real-time forecasting of cases can help decision making and control of the disease spread. However, data-driven methods such as recurrent neural networks (RNN) can perform poorly due to limited daily samples in time. In this work, we develop an integrated spatiotemporal model based on the epidemic differential equations (SIR) and RNN. The former after simplification and discretization is a compact model of temporal infection trend of a region while the latter models the effect of nearest neighboring regions. The latter captures latent spatial information. We trained and tested our model on COVID-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting especially in the regime of limited training data.more » « less
- 
            The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world significantly. Modeling the trend of infection and realtime forecasting of cases can help decision making and control of the disease spread. However, data-driven methods such as recurrent neural networks (RNN) can perform poorly due to limited daily samples in time. In this work, we develop an integrated spatiotemporal model based on the epidemic differential equations (SIR) and RNN. The former after simplification and discretization is a compact model of temporal infection trend of a region while the latter models the effect of nearest neighboring regions. The latter captures latent spatial information. We trained and tested our model on COVID-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting especially in the regime of limited training data.more » « less
- 
            Despite hundreds of methods published in the literature, forecasting epidemic dynamics remains challenging yet important. The challenges stem from multiple sources, including: the need for timely data, co-evolution of epidemic dynamics with behavioral and immunological adaptations, and the evolution of new pathogen strains. The ongoing COVID-19 pandemic highlighted these challenges; in an important article, Reich et al. did a comprehensive analysis highlighting many of these challenges.In this paper, we take another step in critically evaluating existing epidemic forecasting methods. Our methods are based on a simple yet crucial observation - epidemic dynamics go through a number of phases (waves). Armed with this understanding, we propose a modification to our deployed Bayesian ensembling case time series forecasting framework. We show that ensembling methods employing the phase information and using different weighting schemes for each phase can produce improved forecasts. We evaluate our proposed method with both the currently deployed model and the COVID-19 forecasthub models. The overall performance of the proposed model is consistent across the pandemic but more importantly, it is ranked third and first during two critical rapid growth phases in cases, regimes where the performance of most models from the CDC forecasting hub dropped significantly.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    