Pulmonary diseases, such as asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major public health challenge. The disease symptoms, including airway obstruction and inflammation, usually result in changes in airway mechanical properties, such as the caliber and impedance of the airway. To measure such airway properties for disease evaluation and diagnosis purposes, pulmonary function tests (PFT) has been widely adopted. However, most existing PFT systems require expensive and cumbersome hardware that are impossible to be used out of clinic. To allow out-clinic continuous pulmonary disease evaluation, in this paper we present AWARE, a new sensing and AI system that supports accurate and reliable PFT using commodity smartphones. AWARE uses a smartphone to transmit acoustic signals and reconstructs the profile of human airway based on the analysis of reflected acoustic waves captured from the smartphone's microphone. The subject's pulmonary condition is then evaluated by a multi-task learning model that integrates both the airway measurements and the subject's lung function records as the ground truth. Evaluations on 75 human subjects demonstrate that AWARE has the capability to achieve 80% accuracy on distinguishing between humans with healthy pulmonary function and with asthma symptoms.
more »
« less
Bayesian inference of networks across multiple sample groups and data types
Summary In this article, we develop a graphical modeling framework for the inference of networks across multiple sample groups and data types. In medical studies, this setting arises whenever a set of subjects, which may be heterogeneous due to differing disease stage or subtype, is profiled across multiple platforms, such as metabolomics, proteomics, or transcriptomics data. Our proposed Bayesian hierarchical model first links the network structures within each platform using a Markov random field prior to relate edge selection across sample groups, and then links the network similarity parameters across platforms. This enables joint estimation in a flexible manner, as we make no assumptions on the directionality of influence across the data types or the extent of network similarity across the sample groups and platforms. In addition, our model formulation allows the number of variables and number of subjects to differ across the data types, and only requires that we have data for the same set of groups. We illustrate the proposed approach through both simulation studies and an application to gene expression levels and metabolite abundances on subjects with varying severity levels of chronic obstructive pulmonary disease. Bayesian inference; Chronic obstructive pulmonary disease (COPD); Data integration; Gaussian graphical model; Markov random field prior; Spike and slab prior.
more »
« less
- PAR ID:
- 10282715
- Date Published:
- Journal Name:
- Biostatistics
- Volume:
- 21
- Issue:
- 3
- ISSN:
- 1468-4357
- Page Range / eLocation ID:
- 561 to 576
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain in vivo , allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with −0.143±0.21/yr ( p = 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression.more » « less
-
Recent respiratory outbreaks have garnered substantial attention, yet most respiratory monitoring remains confined to physical signals. Exhaled breath condensate (EBC) harbors rich molecular information that could unveil diverse insights into an individual’s health. Unfortunately, challenges related to sample collection and the lack of on-site analytical tools impede the widespread adoption of EBC analysis. Here, we introduce EBCare, a mask-based device for real-time in situ monitoring of EBC biomarkers. Using a tandem cooling strategy, automated microfluidics, highly selective electrochemical biosensors, and a wireless reading circuit, EBCare enables continuous multimodal monitoring of EBC analytes across real-life indoor and outdoor activities. We validated EBCare’s usability in assessing metabolic conditions and respiratory airway inflammation in healthy participants, patients with chronic obstructive pulmonary disease or asthma, and patients after COVID-19 infection.more » « less
-
null (Ed.)Purpose: To develop and evaluate a deep learning (DL) approach to extract rich information from high-resolution computed tomography (HRCT) of patients with chronic obstructive pulmonary disease (COPD). Methods: We develop a DL-based model to learn a compact representation of a subject, which is predictive of COPD physiologic severity and other outcomes. Our DL model learned: (a) to extract informative regional image features from HRCT; (b) to adaptively weight these features and form an aggregate patient representation; and finally, (c) to predict several COPD outcomes. The adaptive weights correspond to the regional lung contribution to the disease. We evaluate the model on 10 300 participants from the COPDGene cohort. Results: Our model was strongly predictive of spirometric obstruction ( r2 = 0.67) and grouped 65.4% of subjects correctly and 89.1% within one stage of their GOLD severity stage. Our model achieved an accuracy of 41.7% and 52.8% in stratifying the population-based on centrilobular (5-grade) and paraseptal (3-grade) emphysema severity score, respectively. For predicting future exacerbation, combining subjects' representations from our model with their past exacerbation histories achieved an accuracy of 80.8% (area under the ROC curve of 0.73). For all-cause mortality, in Cox regression analysis, we outperformed the BODE index improving the concordance metric (ours: 0.61 vs BODE: 0.56). Conclusions: Our model independently predicted spirometric obstruction, emphysema severity, exacerbation risk, and mortality from CT imaging alone. This method has potential applicability in both research and clinical practice.more » « less
-
Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Hamiltonian Monte Carlo (SGHMC) are two popular Markov Chain Monte Carlo (MCMC) algorithms for Bayesian inference that can scale to large datasets, allowing to sample from the posterior distribution of the parameters of a statistical model given the input data and the prior distribution over the model parameters. However, these algorithms do not apply to the decentralized learning setting, when a network of agents are working collaboratively to learn the parameters of a statistical model without sharing their individual data due to privacy reasons or communication constraints. We study two algorithms: Decentralized SGLD (DE-SGLD) and Decentralized SGHMC (DE-SGHMC) which are adaptations of SGLD and SGHMC methods that allow scaleable Bayesian inference in the decentralized setting for large datasets. We show that when the posterior distribution is strongly log-concave and smooth, the iterates of these algorithms converge linearly to a neighborhood of the target distribution in the 2-Wasserstein distance if their parameters are selected appropriately. We illustrate the efficiency of our algorithms on decentralized Bayesian linear regression and Bayesian logistic regression problemsmore » « less
An official website of the United States government

