skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Memory-Augmented Capsule Network for Adaptable Lung Nodule Classification
Computer-aided diagnosis (CAD) systems must constantly cope with the perpetual changes in data distribution caused by different sensing technologies, imaging protocols, and patient populations. Adapting these systems to new domains often requires significant amounts of labeled data for re-training. This process is labor-intensive and time-consuming. We propose a memory-augmented capsule network for the rapid adaptation of CAD models to new domains. It consists of a capsule network that is meant to extract feature embeddings from some high-dimensional input, and a memory-augmented task network meant to exploit its stored knowledge from the target domains. Our network is able to efficiently adapt to unseen domains using only a few annotated samples. We evaluate our method using a large-scale public lung nodule dataset (LUNA), coupled with our own collected lung nodules and incidental lung nodules datasets. When trained on the LUNA dataset, our network requires only 30 additional samples from our collected lung nodule and incidental lung nodule datasets to achieve clinically relevant performance (0.925 and 0.891 area under receiving operating characteristic curves (AUROC), respectively). This result is equivalent to using two orders of magnitude less labeled training data while achieving the same performance. We further evaluate our method by introducing heavy noise, artifacts, and adversarial attacks. Under these severe conditions, our network’s AUROC remains above 0.7 while the performance of state-of-the-art approaches reduce to chance level  more » « less
Award ID(s):
1910973
PAR ID:
10282858
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Medical Imaging
ISSN:
0278-0062
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce an active, semisupervised algorithm that utilizes Bayesian experimental design to address the shortage of annotated images required to train and validate Artificial Intelligence (AI) models for lung cancer screening with computed tomography (CT) scans. Our approach incorporates active learning with semisupervised expectation maximization to emulate the human in the loop for additional ground truth labels to train, evaluate, and update the neural network models. Bayesian experimental design is used to intelligently identify which unlabeled samples need ground truth labels to enhance the model’s performance. We evaluate the proposed Active Semi-supervised Expectation Maximization for Computer aided diagnosis (CAD) tasks (ASEM-CAD) using three public CT scans datasets: the National Lung Screening Trial (NLST), the Lung Image Database Consortium (LIDC), and Kaggle Data Science Bowl 2017 for lung cancer classification using CT scans. ASEM-CAD can accurately classify suspicious lung nodules and lung cancer cases with an area under the curve (AUC) of 0.94 (Kaggle), 0.95 (NLST), and 0.88 (LIDC) with significantly fewer labeled images compared to a fully supervised model. This study addresses one of the significant challenges in early lung cancer screenings using low-dose computed tomography (LDCT) scans and is a valuable contribution towards the development and validation of deep learning algorithms for lung cancer screening and other diagnostic radiology examinations. 
    more » « less
  2. Abstract BackgroundLung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin‐sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities. PurposeThe standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error‐prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection. MethodsA robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC‐IDRI) dataset are used for training, validation, and testing. ResultsUsing only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre‐defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions. ConclusionsA pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients. 
    more » « less
  3. Interstitial lung disease (ILD) causes pulmonary fibrosis. The correct classification of ILD plays a crucial role in the diagnosis and treatment process. In this research work, we propose a lung nodules recognition method based on a deep convolutional neural network (DCNN) and global features, which can be used for computer-aided diagnosis (CAD) of global features of lung nodules. Firstly, a DCNN is constructed based on the characteristics and complexity of lung computerized tomography (CT) images. Then we discussed the effects of different iterations on the recognition results and influence of different model structures on the global features of lung nodules. We also incorporated the improvement of convolution kernel size, feature dimension, and network depth. Thirdly, the effects of different pooling methods, activation functions and training algorithms we proposed has been analyzed to demonstrate the advantages of the new strategy. Finally, the experimental results verify the feasibility of the proposed DCNN for CAD of global features of lung nodules, and the evaluation shown that our proposed method could achieve an outstanding results compare to state-of-arts. 
    more » « less
  4. Medical imaging data annotation is expensive and time-consuming. Supervised deep learning approaches may encounter overfitting if trained with limited medical data, and further affect the robustness of computer-aided diagnosis (CAD) on CT scans collected by various scanner vendors. Additionally, the high false-positive rate in automatic lung nodule detection methods prevents their applications in daily clinical routine diagnosis. To tackle these issues, we first introduce a novel self-learning schema to train a pre-trained model by learning rich feature representatives from large-scale unlabeled data without extra annotation, which guarantees a consistent detection performance over novel datasets. Then, a 3D feature pyramid network ( 3DFPN ) is proposed for high-sensitivity nodule detection by extracting multi-scale features, where the weights of the backbone network are initialized by the pre-trained model and then fine-tuned in a supervised manner. Further, a High Sensitivity and Specificity ( HS 2 ) network is proposed to reduce false positives by tracking the appearance changes among continuous CT slices on Location History Images (LHI) for the detected nodule candidates. The proposed method’s performance and robustness are evaluated on several publicly available datasets, including LUNA16, SPIE-AAPM, LungTIME, and HMS. Our proposed detector achieves the state-of-the-art result of 90.6 % sensitivity at 1 / 8 false positive per scan on the LUNA16 dataset. The proposed framework’s generalizability has been evaluated on three additional datasets (i.e., SPIE-AAPM, LungTIME, and HMS) captured by different types of CT scanners. 
    more » « less
  5. 3D CT point clouds reconstructed from the original CT images are naturally represented in real-world coordinates. Compared with CT images, 3D CT point clouds contain invariant geometric features with irregular spatial distributions from multiple viewpoints. This paper rethinks pulmonary nodule detection in CT point cloud representations. We first extract the multi-view features from a sparse convolutional (SparseConv) encoder by rotating the point clouds with different angles in the world coordinate. Then, to simultaneously learn the discriminative and robust spatial features from various viewpoints, a nodule proposal optimization schema is proposed to obtain coarse nodule regions by aggregating consistent nodule proposals prediction from multi-view features. Last, the multi-level features and semantic segmentation features extracted from a SparseConv decoder are concatenated with multi-view features for final nodule region regression. Experiments on the benchmark dataset (LUNA16) demonstrate the feasibility of applying CT point clouds in lung nodule detection task. Furthermore, we observe that by combining multi-view predictions, the performance of the proposed framework is greatly improved compared to single-view, while the interior texture features of nodules from images are more suitable for detecting nodules in small sizes. 
    more » « less