skip to main content


Title: Memory-Augmented Capsule Network for Adaptable Lung Nodule Classification
Computer-aided diagnosis (CAD) systems must constantly cope with the perpetual changes in data distribution caused by different sensing technologies, imaging protocols, and patient populations. Adapting these systems to new domains often requires significant amounts of labeled data for re-training. This process is labor-intensive and time-consuming. We propose a memory-augmented capsule network for the rapid adaptation of CAD models to new domains. It consists of a capsule network that is meant to extract feature embeddings from some high-dimensional input, and a memory-augmented task network meant to exploit its stored knowledge from the target domains. Our network is able to efficiently adapt to unseen domains using only a few annotated samples. We evaluate our method using a large-scale public lung nodule dataset (LUNA), coupled with our own collected lung nodules and incidental lung nodules datasets. When trained on the LUNA dataset, our network requires only 30 additional samples from our collected lung nodule and incidental lung nodule datasets to achieve clinically relevant performance (0.925 and 0.891 area under receiving operating characteristic curves (AUROC), respectively). This result is equivalent to using two orders of magnitude less labeled training data while achieving the same performance. We further evaluate our method by introducing heavy noise, artifacts, and adversarial attacks. Under these severe conditions, our network’s AUROC remains above 0.7 while the performance of state-of-the-art approaches reduce to chance level  more » « less
Award ID(s):
1910973
NSF-PAR ID:
10282858
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Medical Imaging
ISSN:
0278-0062
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Lung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin‐sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities.

    Purpose

    The standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error‐prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection.

    Methods

    A robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC‐IDRI) dataset are used for training, validation, and testing.

    Results

    Using only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre‐defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions.

    Conclusions

    A pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients.

     
    more » « less
  2. Medical imaging data annotation is expensive and time-consuming. Supervised deep learning approaches may encounter overfitting if trained with limited medical data, and further affect the robustness of computer-aided diagnosis (CAD) on CT scans collected by various scanner vendors. Additionally, the high false-positive rate in automatic lung nodule detection methods prevents their applications in daily clinical routine diagnosis. To tackle these issues, we first introduce a novel self-learning schema to train a pre-trained model by learning rich feature representatives from large-scale unlabeled data without extra annotation, which guarantees a consistent detection performance over novel datasets. Then, a 3D feature pyramid network ( 3DFPN ) is proposed for high-sensitivity nodule detection by extracting multi-scale features, where the weights of the backbone network are initialized by the pre-trained model and then fine-tuned in a supervised manner. Further, a High Sensitivity and Specificity ( HS 2 ) network is proposed to reduce false positives by tracking the appearance changes among continuous CT slices on Location History Images (LHI) for the detected nodule candidates. The proposed method’s performance and robustness are evaluated on several publicly available datasets, including LUNA16, SPIE-AAPM, LungTIME, and HMS. Our proposed detector achieves the state-of-the-art result of 90.6 % sensitivity at 1 / 8 false positive per scan on the LUNA16 dataset. The proposed framework’s generalizability has been evaluated on three additional datasets (i.e., SPIE-AAPM, LungTIME, and HMS) captured by different types of CT scanners. 
    more » « less
  3. e20551 Background: Enzyme activity is at the center of all biological processes. When these activities are misregulated by changes in sequence, expression, or activity, pathologies emerge. Misregulation of protease enzymes such as Matrix Metalloproteinases and Cathepsins play a key role in the pathophysiology of cancer. We describe here a novel class of graphene-based, cost effective biosensors that can detect altered protease activation in a blood sample from early stage lung cancer patients. Methods: The Gene Expression Omnibus (GEO) tool was used to identify proteases differentially expressed in lung cancer and matched normal tissue. Biosensors were assembled on a graphene backbone annotated with one of a panel of fluorescently tagged peptides. The graphene quenches fluorescence until the peptide is either cleaved by active proteases or altered by post-translational modification. 19 protease biosensors were evaluated on 431 commercially collected serum samples from non-lung cancer controls (69%) and pathologically confirmed lung cancer cases (31%) tested over two independent cohorts. Serum was incubated with each of the 19 biosensors and enzyme activity was measured indirectly as a continuous variable by a fluorescence plate reader. Analysis was performed using Emerge, a proprietary predictive and classification modeling system based on massively parallel evolving “Turing machine” algorithms. Each analysis stratified allocation into training and testing sets, and reserved an out-of-sample validation set for reporting. Results: 256 clinical samples were initially evaluated including 35% cancer cases evenly distributed across stages I (29%), II (26%), III (24%) and IV (21%). The case controls included common co-morbidies in the at-risk population such as COPD, chronic bronchitis, and benign nodules (19%). Using the Emerge classification analysis, biosensor biomarkers alone (no clinical factors) demonstrated Sensitivity (Se.) = 92% (CI 82%-99%) and Specificity (Sp.) = 82% (CI 69%-91%) in the out-of-sample set. An independent cohort of 175 clinical cases (age 67±8, 52% male) focused on early detection (26% cancer, 70% Stage I, 30% Stage II/III) were similarly evaluated. Classification showed Se. = 100% (CI 79%-100%) and Sp. = 93% (CI 80%-99%) in the out-of-sample set. For the entire dataset of 175 samples, Se. = 100% (CI 92%-100%) and Sp. = 97% (CI 92%-99%) was observed. Conclusions: Lung cancer can be treated if it is diagnosed when still localized. Despite clear data showing screening for lung cancer by Low Dose Computed Tomography (LDCT) is effective, screening compliance remains very low. Protease biosensors provide a cost effective additional specialized tool with high sensitivity and specificity in detection of early stage lung cancer. A large prospective trial of at-risk smokers with follow up is being conducted to evaluate a commercial version of this assay. 
    more » « less
  4. null (Ed.)
    Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifically, it lacks the ability to deal with partially available data in new settings. To address these limitations, we propose {\it OptiMapper}, a novel uninformed cross-subject transfer learning framework for activity recognition. OptiMapper is a combinatorial optimization framework that extracts abstract knowledge across subjects and utilizes this knowledge for developing a personalized and accurate activity recognition model in new subjects. To this end, a novel community-detection-based clustering of unlabeled data is proposed that uses the target user data to construct a network of unannotated sensor observations. The clusters of these target observations are then mapped onto the source clusters using a complete bipartite graph model. In the next step, the mapped labels are conditionally fused with the prediction of a base learner to create a personalized and labeled training dataset for the target user. We present two instantiations of OptiMapper. The first instantiation, which is applicable for transfer learning across domains with identical activity labels, performs a one-to-one bipartite mapping between clusters of the source and target users. The second instantiation performs optimal many-to-one mapping between the source clusters and those of the target. The many-to-one mapping allows us to find an optimal mapping even when the target dataset does not contain sufficient instances of all activity classes. We show that this type of cross-domain mapping can be formulated as a transportation problem and solved optimally. We evaluate our transfer learning techniques on several activity recognition datasets. Our results show that the proposed community detection approach can achieve, on average, 69%$ utilization of the datasets for clustering with an overall clustering accuracy of 87.5%. Our results also suggest that the proposed transfer learning algorithms can achieve up to 22.5% improvement in the activity recognition accuracy, compared to the state-of-the-art techniques. The experimental results also demonstrate high and sustained performance even in presence of partial data. 
    more » « less
  5. Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions.In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches. 
    more » « less