skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep reinforcement learning in medical imaging: A literature review
Deep reinforcement learning (DRL) augments the reinforcement learning framework, which learns a sequence of actions that maximizes the expected reward, with the representative power of deep neural networks. Recent works have demonstrated the great potential of DRL in medicine and healthcare. This paper presents a literature review of DRL in medical imaging. We start with a comprehensive tutorial of DRL, including the latest model-free and model-based algorithms. We then cover existing DRL applications for medical imaging, which are roughly divided into three main categories: (I) parametric medical image analysis tasks including landmark detection, object/lesion detection, registration, and view plane localization; (ii) solving optimization tasks including hyperparameter tuning, selecting augmentation strategies, and neural architecture search; and (iii) miscellaneous applications including surgical gesture segmentation, personalized mobile health intervention, and computational model personalization. The paper concludes with discussions of future perspectives.  more » « less
Award ID(s):
1910973
PAR ID:
10282862
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Medical image analysis
ISSN:
1361-8423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep reinforcement learning (DRL) has demonstrated impressive success in solving complex control tasks by synthesizing control policies from data. However, the safety and stability of applying DRL to safety-critical systems remain a primary concern and challenging problem. To address the problem, we propose the Phy-DRL: a novel physics-model regulated deep reinforcement learning framework. The Phy-DRL is novel in two architectural designs: a physics-model-regulated reward and residual control, which integrates physics-model-based control and data-driven control. The concurrent designs enable the Phy-DRL to mathematically provable safety and stability guarantees. Finally, the effectiveness of the Phy-DRL is validated by an inverted pendulum system. Additionally, the experimental results demonstrate that the Phy-DRL features remarkably accelerated training and enlarged reward. 
    more » « less
  2. null (Ed.)
    Machine learning applied to architecture design presents a promising opportunity with broad applications. Recent deep reinforcement learning (DRL) techniques, in particular, enable efficient exploration in vast design spaces where conventional design strategies may be inadequate. This paper proposes a novel deep reinforcement framework, taking routerless networks-on-chip (NoC) as an evaluation case study. The new framework successfully resolves problems with prior design approaches, which are either unreliable due to random searches or inflexible due to severe design space restrictions. The framework learns (near-)optimal loop placement for routerless NoCs with various design constraints. A deep neural network is developed using parallel threads that efficiently explore the immense routerless NoC design space with a Monte Carlo search tree. Experimental results show that, compared with conventional mesh, the proposed deep reinforcement learning (DRL) routerless design achieves a 3.25x increase in throughput, 1.6x reduction in packet latency, and 5x reduction in power. Compared with the state-of-the-art routerless NoC, DRL achieves a 1.47x increase in throughput, 1.18x reduction in packet latency, 1.14x reduction in average hop count, and 6.3% lower power consumption. 
    more » « less
  3. This paper proposes the Phy-DRL: a physics-regulated deep reinforcement learning (DRL) framework for safety-critical autonomous systems. The Phy-DRL has three distinguished invariant-embedding designs: i) residual action policy (i.e., integrating data-driven-DRL action policy and physics-model-based action policy), ii) automatically constructed safety-embedded reward, and iii) physics-model-guided neural network (NN) editing, including link editing and activation editing. Theoretically, the Phy-DRL exhibits 1) a mathematically provable safety guarantee and 2) strict compliance of critic and actor networks with physics knowledge about the action-value function and action policy. Finally, we evaluate the Phy-DRL on a cart-pole system and a quadruped robot. The experiments validate our theoretical results and demonstrate that Phy-DRL features guarantee safety compared to purely data-driven DRL and solely model-based design, while offering remarkably fewer learning parameters and fast training towards safety guarantee. 
    more » « less
  4. null (Ed.)
    While Deep Reinforcement Learning has emerged as a de facto approach to many complex experience-driven networking problems, it remains challenging to deploy DRL into real systems. Due to the random exploration or half-trained deep neural networks during the online training process, the DRL agent may make unexpected decisions, which may lead to system performance degradation or even system crash. In this paper, we propose PnP-DRL, an offline-trained, plug and play DRL solution, to leverage the batch reinforcement learning approach to learn the best control policy from pre-collected transition samples without interacting with the system. After being trained without interaction with systems, our Plug and Play DRL agent will start working seamlessly, without additional exploration or possible disruption of the running systems. We implement and evaluate our PnP-DRL solution on a prevalent experience-driven networking problem, Dynamic Adaptive Streaming over HTTP (DASH). Extensive experimental results manifest that 1) The existing batch reinforcement learning method has its limits; 2) Our approach PnP-DRL significantly outperforms classical adaptive bitrate algorithms in average user Quality of Experience (QoE); 3) PnP-DRL, unlike the state-of-the-art online DRL methods, can be off and running without learning gaps, while achieving comparable performances. 
    more » « less
  5. Deep reinforcement learning (DRL) has gained immense success in many applications, including gaming AI, robotics, and system scheduling. Distributed algorithms and architectures have been vastly proposed (e.g., actor-learner architecture) to accelerate DRL training with large-scale server-based clusters. However, training on-policy algorithms with the actor-learner architecture unavoidably induces resource wasting due to synchronization between learners and actors, thus resulting in significantly extra billing. As a promising alternative, serverless computing naturally fits on-policy synchronization and alleviates resource wasting in distributed DRL training with pay-as-you-go pricing. Yet, none has leveraged serverless computing to facilitate DRL training. This paper proposes MinionsRL, the first serverless distributed DRL training framework that aims to accelerate DRL training- and cost-efficiency with dynamic actor scaling. We prototype MinionsRL on top of Microsoft Azure Container Instances and evaluate it with popular DRL tasks from OpenAI Gym. Extensive experiments show that MinionsRL reduces total training time by up to 52% and training cost by 86% compared to latest solutions. 
    more » « less