Flying insects are thought to achieve energy-efficient flapping flight by storing and releasing elastic energy in their muscles, tendons, and thorax. However, ‘spring-wing’ flight systems consisting of elastic elements coupled to nonlinear, unsteady aerodynamic forces present possible challenges to generating stable and responsive wing motion. The energetic efficiency from resonance in insect flight is tied to the Weis-Fogh number (N), which is the ratio of peak inertial force to aerodynamic force. In this paper, we present experiments and modeling to study how resonance efficiency (which increases withN) influences the control responsiveness and perturbation resistance of flapping wingbeats. In our first experiments, we provide a step change in the input forcing amplitude to a series-elastic spring-wing system and observe the response time of the wing amplitude increase. In our second experiments we provide an external fluid flow directed at the flapping wing and study the perturbed steady-state wing motion. We evaluate both experiments across Weis-Fogh numbers from 1 < N < 10. The results indicate that spring-wing systems designed for maximum energetic efficiency also experience trade-offs in agility and stability as the Weis-Fogh number increases. Our results demonstrate that energetic efficiency and wing maneuverability are in conflict in resonant spring-wing systems, suggesting that mechanical resonance presents tradeoffs in insect flight control and stability.
more »
« less
Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight
Flapping-wing insects, birds and robots are thought to offset the high power cost of oscillatory wing motion by using elastic elements for energy storage and return. Insects possess highly resilient elastic regions in their flight anatomy that may enable high dynamic efficiency. However, recent experiments highlight losses due to damping in the insect thorax that could reduce the benefit of those elastic elements. We performed experiments on, and simulations of, a dynamically scaled robophysical flapping model with an elastic element and biologically relevant structural damping to elucidate the roles of body mechanics, aerodynamics and actuation in spring-wing energetics. We measured oscillatory flapping-wing dynamics and energetics subject to a range of actuation parameters, system inertia and spring elasticity. To generalize these results, we derive the non-dimensional spring-wing equation of motion and present variables that describe the resonance properties of flapping systems: N , a measure of the relative influence of inertia and aerodynamics, and K ^ , the reduced stiffness. We show that internal damping scales with N , revealing that dynamic efficiency monotonically decreases with increasing N . Based on these results, we introduce a general framework for understanding the roles of internal damping, aerodynamic and inertial forces, and elastic structures within all spring-wing systems.
more »
« less
- Award ID(s):
- 1806833
- PAR ID:
- 10282871
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 18
- Issue:
- 175
- ISSN:
- 1742-5662
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper analyses the methods and technologies involved in flapping-wing flying robots (FWFRs), where the actuation of the flapping wing produces thrust and lift force that mimics birds’ and insects’ flight. The focus is on the evolution of the flapping-wing technology and the challenges in prototyping, modeling, navigation, and control. The mechanism for flapping production, frequency control of the flapping, and wing/tail control for positioning the robot are important topics for successful prototyping. The article includes the study of the dynamics and aerodynamics of the FWFR. Using the combination of flapping and gliding has led researchers to seek more energy savings through this hybrid-in-nature dynamic system, which benefits from the wind, a natural and free energy source. The paper reviews the dynamics, design, and categorization of flapping-wing systems; it also includes control and onboard intelligent functionalities, particularly environment perception for positioning and guidance, as well as obstacle detection and avoidance.more » « less
-
In the last decade, roboticists have had significant success building centimeter-scale flapping wing micro aerial vehicles (FWMAVs) inspired by the flight of insects. Evidence suggests that insects store and release energy in the thoracic exoskeleton to improve energy efficiency by flapping at resonance. Insect-inspired micro flying robots have also leveraged resonance to improve efficiency, but they have discovered that operating at the resonant frequency leads to issues with flight control. This research seeks to investigate the roles that elasticity, aerodynamics, and muscle dynamics play in the emergent dynamics of flapping flight by studying elastic flapping spring-wing systems using dynamically-scaled robophysical models of springwings. Studying the dynamics of a robot with comparable features enables the validation of models from biology that are otherwise difficult to test in living insects, the generation of new hypotheses, and the development of novel FWMAV designs. In Chapter 1, the spring-wing system is characterized via a nonlinear spring-mass-damper model. A robophysical model validates that such systems gain energetic benefits from operating at resonance, but reveals that the benefit scales with an underappreciated dimensionless ratio of inertial to aerodynamic forces, the Weis-Fogh number. We show through dimensional analysis that any real system, living or robotic, must balance the mechanical advantage gained from operating at resonance with diminishing returns in efficiency. Chapter 2 further explores the impact of the Weis-Fogh number on flapping dynamics, showing that responsiveness to control inputs is reduced and resistance to environmental perturbations is increased as the dimensionless ratio increases. Together with calculations of Weis-Fogh number in insects, these studies illustrate tradeoffs that drive evolution of resonant flight in nature and guide development of future FWMAVs with elastic energy exchange. In the second half of the thesis, muscle dynamics are introduced in the form of a simplified model of self-excited asynchronous insect muscle. In Chapter 3, a form of velocity feedback, adapted from experiments on insect flight muscle, is developed and integrated with the springwing model, producing a system that generates steady flapping via limit-cycle oscillations despite the absence of periodic control inputs. The model is explored analytically, in simulation, and via implementation on the robotic spring-wing. Novel dynamic characteristics that enable adaptation to damage and passive response to wing collisions are described. Chapter 4 leverages the asynchronous feedback model as part of an interdisciplinary study of the evolution of asynchronous muscle. Phylogenetic analysis, direct measurement of insect muscle dynamics, and experiments on the robophysical system show that evolutionary transitions between periodicallyforced and self-excited insect muscle were likely made possible by a ”bridge” in the dynamic parameter space that could be traversed under specific conditions. The asynchronous spring-wing model provides new insight into the flight and evolution of some of the most agile insects in nature, and presents a novel adaptive control scheme for future FWMAVs.more » « less
-
In most instances, flapping wing robots have emulated the “synchronous” actuation of insects in which the wingbeat timing is generated from a time-dependent, rhythmic signal. The internal dynamics of asynchronous insect flight muscle enable high-frequency, adaptive wingbeats with minimal direct neural control. In this paper, we investigate how the delayed stretch-activation (dSA) response of asynchronous insect flight muscle can be transformed into a feedback control law for flapping wing robots that results in stable limit cycle wingbeats. We first demonstrate - in theory and simulation - the mechanism by which asynchronous wingbeats self-excite. Then, we implement the feedback law on a dynamically-scaled robophysical model as well as on an insect-scale robotic flapping wing. Experiments on large- and small-scale robots demonstrate good agreement with the theory results and highlight how dSA parameters govern wingbeat amplitude and frequency. Lastly, we demonstrate that asynchronous actuation has several advantages over synchronous actuation schemes, including the ability to rapidly adapt or halt wingbeats in response to external loads or collisions through low-level feedback control.more » « less
-
Realistic simulation of the intricate wing deformations seen in flying insects not only deepens our comprehension of insect fight mechanics but also opens up numerous applications in fields such as computer animation and virtual reality. Despite its importance, this research area has been relatively under-explored due to the complex and diverse wing structures and the intricate patterns of deformation. This paper presents an efficient skeleton-driven model specifically designed to real-time simulate realistic wing deformations across a wide range of flying insects. Our approach begins with the construction of a virtual skeleton that accurately reflects the distinct morphological characteristics of individual insect species. This skeleton serves as the foundation for the simulation of the intricate deformation wave propagation often observed in wing deformations. To faithfully reproduce the bending effect seen in these deformations, we introduce both internal and external forces that act on the wing joints, drawing on periodic wing-beat motion and a simplified aerodynamics model. Additionally, we utilize mass- spring algorithms to simulate the inherent elasticity of the wings, helping to prevent excessive twisting. Through various simulation experiments, comparisons, and user studies, we demonstrate the effectiveness, robustness, and adaptability of our model.more » « less
An official website of the United States government

