skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tar AR: Bringing the past to life in place-based augmented reality science learning.
Informal science learning spaces such as museums have been exploring the potential of Augmented Reality (AR) as a means to connect visitors to places, times, or types of content that are otherwise inaccessible. This proposal reports on a design-based research project conducted at La Brea Tar Pits, an active paleontological dig site located within a city park in the heart of Los Angeles. The Natural History Museums of Los Angeles County and the University of Southern California engaged in a research practice partnership to enhance place-based science learning through the design and iterative testing of potential AR exhibits. Results from one implementation show that AR technology increased visitor interest in the park and positive emotions around science content. Significant learning gains and decreases in science misconceptions also occurred for participants. We also give guidance on developing scientifically accurate assets for AR experiences and leading users through a virtual narrative. This presentation offers insights into museum and university partnerships for promoting public understanding of science in informal spaces by leveraging place-based learning through technology-enhanced engagement. https://mw21.museweb.net/proposal/tar-ar-bringing-the-past-to-life-in-place-based-augmented-reality-science-learning/  more » « less
Award ID(s):
1810984
PAR ID:
10282900
Author(s) / Creator(s):
Date Published:
Journal Name:
MuseWeb 2021 Annual Meeting Professional Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Informal science learning spaces such as museums have been exploring the potential of augmented reality (AR) as a means to connect visitors to places, times, or types of content that are otherwise inaccessible. This design-based research engaged the La Brea Tar Pits Museum and university partners in a research practice partnership to enhance place-based science learning through potential AR exhibits. Results from implementation of four design iterations show that AR technology is a promising tool to help learners interact with content that dates back thousands of years and overcome their scientific misconceptions. Furthermore, incorporating AR technology into museum exhibits can update them with 21st learning tools to support visitor enjoyment in science learning. 
    more » « less
  2. Science museums aim to engage a large, diverse public audience in science learning and consequently, attempt to present information in entertaining, socially oriented, and innovative ways. Recent work using augmented reality (defined as technology that overlays virtual objects on to the real world) engages the public using content that is both situated in the context of the exhibit and virtually generated in a way that allows hidden worlds to become visible. However, little is known about how AR technology can facilitate museum visitors science learning. The Tar AR project, a sustained collaborative partnership funded by NSF AISL with La Brea Tar Pits/Natural History Museum of Los Angeles and a local university, explores how an AR experience can: promote visitor enjoyment, enjoyment, increase understanding of scientific topics, and promote user s feelings of ease with AR technology. 
    more » « less
  3. Schwartz, R.; Roehrig, G.; Martin-Hansen, L.; Kemp, P.; Utano, J. (Ed.)
    A key mission for museums is to engage a large and diverse public audience in science learning (Macdonald, 1997). To that end, science museums attempt to use immersive technologies in entertaining, socially oriented, and innovative ways. An example is the use of augmented reality (AR) to overlay virtual objects onto the real-world (Azuma, Baillot, Behringer, Feiner, Julier, & MacIntyre, 2001).We used a Design Based Research (DBR) approach to develop and test four features of an AR experience to promote place-based science learning in an museum setting. While quantitative differences were not found among conditions in knowledge gained, significant learning gains were seen from pre to post, illustrating the potential for place-based informal science learning. Incorporating AR technology into museum exhibits can update them with 21st tools to support visitor engagement in the learning experience. This research contributes to understanding of usability and logistical issues for different AR designs for a public, outdoor informal settings. 
    more » « less
  4. Museums have been exploring the potential of augmented reality (AR) as a means to promote science engagement. This proposal reports on the design and initial test of an AR exhibit at an active paleontological dig site. Results from analysis of participants’ discourse in response to the experience show that AR increased visitor interest and positive emotions around science content. Significant learning gains and decreases in science misconceptions also occurred for participants. 
    more » « less
  5. Chinn, C; Tan, E.; Chan, C; Kali Y. (Ed.)
    From a design-based research study investigating rural families’ science learning with mobile devices, we share findings related to the intergenerational exploration of geological time concepts at a children’s garden at a university arboretum. The team developed a mobile augmented reality app, Time Explorers, focused on how millions of years of rock-water interactions shaped Appalachia. Data are recorded videos of app usage and interviews from 17 families (51 people); videos were transcribed, coded, and developed into qualitative case studies. We present results related to design elements that supported sensory engagement (e.g., observation, touch) through AR visualizations related to geological history. This analysis contributes to the literature on informal learning environments, theory related to learning-on- the-move, and the role of sensory engagement with AR experiences in outdoor learning. 
    more » « less