skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Programming active cohesive granular matter with mechanically induced phase changes
At the macroscale, controlling robotic swarms typically uses substantial memory, processing power, and coordination unavailable at the microscale, e.g., for colloidal robots, which could be useful for fighting disease, fabricating intelligent textiles, and designing nanocomputers. To develop principles that can leverage physical interactions and thus be used across scales, we take a two-pronged approach: a theoretical abstraction of self-organizing particle systems and an experimental robot system of active cohesive granular matter that intentionally lacks digital electronic computation and communication, using minimal (or no) sensing and control. As predicted by theory, as interparticle attraction increases, the collective transitions from dispersed to a compact phase. When aggregated, the collective can transport non-robot “impurities,” thus performing an emergent task driven by the physics underlying the transition. These results reveal a fruitful interplay between algorithm design and active matter robophysics that can result in principles for programming collectives without the need for complex algorithms or capabilities.  more » « less
Award ID(s):
1806833 1733680
PAR ID:
10282960
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
17
ISSN:
2375-2548
Page Range / eLocation ID:
eabe8494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martin Bazant (Ed.)
    The collective motion of synthetic active colloids is an emerging area of research in soft matter physics and is important both as a platform for fundamental studies ranging from non-equilibrium statistical mechanics to the basic principles of self-organization, emergent phenomena, and assembly underlying life, as well as applications in biomedicine and metamaterials. The potentially transformative nature of the field over the next decade and beyond is a topic of critical research importance. Electrokinetic active colloids represent an extremely flexible platform for the investigation and modulation of collective behavior in active matter. Here, we review progress in the past five years in electrokinetic active systems and related topics in active matter with important fundamental research and applicative potential to be investigated using electrokinetic systems. 
    more » « less
  2. Environments with large terrain height variations present great challenges for legged robot locomotion. Drawing inspiration from fire ants’ collective assembly behavior, we study strategies that can enable two “connectable” robots to collectively navigate over bumpy terrains with height variations larger than robot leg length. Each robot was designed to be extremely simple, with a cubical body and one rotary motor actuating four vertical peg legs that move in pairs. Two or more robots could physically connect to one another to enhance collective mobility. We performed locomotion experiments with a two-robot group, across an obstacle field filled with uniformlydistributed semi-spherical “boulders”. Experimentally-measured robot speed suggested that the connection length between the robots has a significant effect on collective mobility: connection length C ∈ [0.86, 0.9] robot unit body length (UBL) were able to produce sustainable movements across the obstacle field, whereas connection length C ∈ [0.63, 0.84] and [0.92, 1.1] UBL resulted in low traversability. An energy landscape based model revealed the underlying mechanism of how connection length modulated collective mobility through the system’s potential energy landscape, and informed adaptation strategies for the two-robot system to adapt their connection length for traversing obstacle fields with varying spatial frequencies. Our results demonstrated that by varying the connection configuration between the robots, the tworobot system could leverage mechanical intelligence to better utilize obstacle interaction forces and produce improved locomotion. Going forward, we envision that generalized principles of robotenvironment coupling can inform design and control strategies for a large group of small robots to achieve ant-like collective environment negotiation. 
    more » « less
  3. Condensed matter studies have shown that fusion of two lipid membranes requires drastic structural rearrangements and is thus intrinsically slow. Interestingly, all forms of life on Earth use fusion to carry out some of the most fundamental life processes—communication, growth, metabolic homeostasis—that must be accomplished on timescales as short as a fraction of a millisecond. How do living systems beat the prohibitively slow speed limit imposed by membrane fusion? How do they tune the fusion timescale so that it matches a particular biological function? Here it is argued that fusion-mediated life processes as diverse as viral infection, muscle growth, and neuronal communication have all evolved at a common strategy that can be captured through a unifying relationship between the timescale of the process and the strength of the relevant trigger. Activated motion in a bias field along an emergent collective coordinate provides a suitable physical picture. The timescale is set by a reduced quantity defined as the trigger strength in the active state scaled by a system-specific critical parameter. The unified description suggests simple physical principles that organize the complexity of living systems and evolutionarily drive them toward functional behavior. 
    more » « less
  4. Many types of animal cells exert active, contractile forces and mechanically deform their elastic substrate, to accomplish biological functions such as migration. These substrate deformations provide a mechanism in principle by which cells may sense other cells, leading to long-range mechanical inter–cell interactions and possible self-organization. Here, inspired by cell mechanobiology, we propose an active matter model comprising self-propelling particles that interact at a distance through their mutual deformations of an elastic substrate. By combining a minimal model for the motility of individual particles with a linear elastic model that accounts for substrate-mediated, inter–particle interactions, we examine emergent collective states that result from the interplay of motility and long-range elastic dipolar interactions. In particular, we show that particles self-assemble into flexible, motile chains which can cluster to form diverse larger-scale compact structures with polar order. By computing key structural and dynamical metrics, we distinguish between the collective states at weak and strong elastic interaction strength, as well as at low and high motility. We also show how these states are affected by confinement within a channel geometry–an important characteristic of the complex mechanical micro-environment inhabited by cells. Our model predictions may be generally applicable to active matter with dipolar interactions ranging from biological cells to synthetic colloids endowed with electric or magnetic dipole moments. 
    more » « less
  5. Abstract Engineering arrays of active optical centers to control the interaction Hamiltonian between light and matter has been the subject of intense research recently. Collective interaction of atomic arrays with optical photons can give rise to directionally enhanced absorption or emission, which enables engineering of broadband and strong atom-photon interfaces. Here, we report on the observation of long-range cooperative resonances in an array of rare-earth ions controllably implanted into a solid-state lithium niobate micro-ring resonator. We show that cooperative effects can be observed in an ordered ion array extended far beyond the light’s wavelength. We observe enhanced emission from both cavity-induced Purcell enhancement and array-induced collective resonances at cryogenic temperatures. Engineering collective resonances as a paradigm for enhanced light-matter interactions can enable suppression of free-space spontaneous emission. The multi-functionality of lithium niobate hosting rare-earth ions can open possibilities of quantum photonic device engineering for scalable and multiplexed quantum networks. 
    more » « less