skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Period multiplication cascade at the order-by-disorder transition in uniaxial random field XY magnets
Abstract Uniaxial random field disorder induces a spontaneous transverse magnetization in the XY model. Adding a rotating driving field, we find a critical point attached to the number of driving cycles needed to complete a limit cycle, the first discovery of this phenomenon in a magnetic system. Near the critical drive, time crystal behavior emerges, in which the period of the limit cycles becomes an integer n  > 1 multiple of the driving period. The period n can be engineered via specific disorder patterns. Because n generically increases with system size, the resulting period multiplication cascade is reminiscent of that occurring in amorphous solids subject to oscillatory shear near the onset of plastic deformation, and of the period bifurcation cascade near the onset of chaos in nonlinear systems, suggesting it is part of a larger class of phenomena in transitions of dynamical systems. Applications include magnets, electron nematics, and quantum gases.  more » « less
Award ID(s):
2006192 1508236
PAR ID:
10282980
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It was recently proposed that the electric field oscillation as a result of self-consistente±pair production may be the source of coherent radio emission from pulsars. Direct particle-in-cell simulations of this process have shown that the screening of the parallel electric field by this pair cascade manifests as a limit cycle, as the parallel electric field is recurrently induced when pairs produced in the cascade escape from the gap region. In this work, we develop a simplified time-dependent kinetic model ofe±pair cascades in pulsar magnetospheres that can reproduce the limit-cycle behavior of pair production and electric field screening. This model includes the effects of a magnetospheric current, the escape ofe±, as well as the dynamic dependence of pair production rate on the plasma density and energy. Using this simple theoretical model, we show that the power spectrum of electric field oscillations averaged over many limit cycles is compatible with the observed pulsar radio spectrum. 
    more » « less
  2. Disorder free many-body localization (MBL) can occur in interacting systems that can dynamically generate their own disorder. We address the thermal-MBL phase transition of two isotropic Heisenberg spin chains that are quasiperiodically coupled to each other. The spin chains are incommensurate and are coupled through a short-range exchange interaction of the X X Z type that decays exponentially with the distance. Using exact diagonalization, matrix product states, and a density matrix renormalization group, we calculate the time evolution of the entanglement entropy at long times and extract the inverse participation ratio in the thermodynamic limit. We show that this system has a robust MBL phase. We establish the phase diagram with the onset of MBL as a function of the interchain exchange coupling and of the incommensuration between the spin chains. The Ising limit of the interchain interaction optimizes the stability of the MBL phase over a broad range of incommensurations above a given critical exchange coupling. Incorporation of interchain spin flips significantly enhances entanglement between the spin chains and produces delocalization, favoring a prethermal phase whose entanglement entropy grows logarithmically with time. Published by the American Physical Society2024 
    more » « less
  3. Abstract Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise. 
    more » « less
  4. The nature of the interplay between fluctuations and quenched random disorder is a long-standing open problem, particularly in systems with a continuous order parameter. This lack of a full theoretical treatment has been underscored by recent advances in experiments on charge density wave materials. To address this problem, we formulate an exactly solvable model of a two-dimensional randomly pinned incommensurate charge density wave, and use the large-N technique to map out the phase diagram and order parameter correlations. Our approach captures the physics of the Berezinskii–Kosterlitz–Thouless phase transition in the clean limit at largeN. We pay particular attention to the roles of thermal fluctuations and quenched random field disorder in destroying long-range order, finding a novel crossover between weakly- and strongly-disordered regimes. 
    more » « less
  5. null (Ed.)
    Wood formation consumes around 15% of the anthropogenic CO 2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes. 
    more » « less