skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: FKBP5 : A Key Mediator of How Vertebrates Flexibly Cope with Adversity
Abstract Flexibility in the regulation of the hypothalamic–pituitary–adrenal (HPA) axis is an important mediator of stress resilience as it helps organisms adjust to, avoid, or compensate for acute and chronic challenges across changing environmental contexts. Glucocorticoids remain the favorite metric from medicine to conservation biology to attempt to quantify stress resilience despite the skepticism around their consistency in relation to individual health, welfare, and fitness. We suggest that a cochaperone molecule related to heat shock proteins and involved in glucocorticoid receptor activity, FKBP5, may mediate HPA flexibility and therefore stress resilience because it affects how individuals can regulate glucocorticoids and therefore capacitates their abilities to adjust phenotypes appropriately to prevailing, adverse conditions. Although the molecule is well studied in the biomedical literature, FKBP5 research in wild vertebrates is limited. In the present article, we highlight the potential major role of FKBP5 as mediator of HPA axis flexibility in response to adversity in humans and lab rodents.  more » « less
Award ID(s):
2027040
PAR ID:
10283085
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
70
Issue:
12
ISSN:
0006-3568
Page Range / eLocation ID:
1127 to 1138
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hypothalamic–pituitary–adrenal axis (HPA) flexibility is an emerging concept recognizing that individuals that will cope best with stressors will probably be those using their hormones in the most adaptive way. The HPA flexibility concept considers glucocorticoids as molecules that convey information about the environment from the brain to the body so that the organismal phenotype comes to complement prevailing conditions. In this context, FKBP5 protein appears to set the extent to which circulating glucocorticoid concentrations can vary within and across stressors. Thus,FKBP5expression, and the HPA flexibility it causes, seem to represent an individual's ability to regulate its hormones to orchestrate organismal responses to stressors. AsFKBP5expression can also be easily measured in blood, it could be a worthy target of conservation-oriented research attention. We first review the known and likely roles of HPA flexibility and FKBP5 in wildlife. We then describe putative genetic, environmental and epigenetic causes of variation in HPA flexibility andFKBP5expression among and within individuals. Finally, we hypothesize how HPA flexibility andFKBP5expression should affect organismal fitness and hence population viability in response to human-induced rapid environmental changes, particularly urbanization.

    This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’.

     
    more » « less
  2. Abstract

    Individuals often vary markedly in their ability to cope with stressors, but the drivers of this variation remain poorly understood. Many studies have tested relationships among individual variation in glucocorticoid levels and the response to challenges—often finding inconsistent patterns; however, few have addressed whether variation in the capacity to terminate the stress response through negative feedback is associated with stress resilience.

    While conceptual models predict that interactions among different components of hypothalamic–pituitary–adrenal (HPA) axis regulation may be important predictors of the phenotypic and fitness effects of stress, we are aware of no previous experimental tests of this hypothesis.

    We investigate whether individual variation in HPA axis regulation is related to resilience to experimental challenges in free‐living tree swallows (Tachycineta bicolor). We mimicked salient natural challenges by temporarily reducing flight efficiency or increasing perceived predation risk during incubation, and determined whether HPA axis responsiveness prior to treatments predicted resilience.

    Females that exhibited both a robust HPA axis activation and strong negative feedback were less likely to abandon nests during incubation.

    Our results suggest that exhibiting a strong HPA axis activation coupled with effective negative feedback may predict stress resilience. Therefore, the ability to turn on and then off the HPA axis efficiently may be important for fitness.

    Our results also suggest that the interactions between different components of the HPA axis may provide greater insight into differences in stress coping capacity.

    Aplain language summaryis available for this article.

     
    more » « less
  3. Abstract

    Stress resilience is defined as the ability to rebound to a homeostatic state after exposure to a perturbation. Organisms modulate various physiological mediators to respond to unpredictable changes in their environment. The gut microbiome is a key example of a physiological mediator that coordinates a myriad of host functions including counteracting stressors. Here, we highlight the gut microbiome as a mediator of host stress resilience in the framework of the reactive scope model. The reactive scope model integrates physiological mediators with unpredictable environmental changes to predict how animals respond to stressors. We provide examples of how the gut microbiome responds to stressors within the four ranges of the reactive scope model (i.e., predictive homeostasis, reactive homeostasis, homeostatic overload, and homeostatic failure). We identify measurable metrics of the gut microbiome that could be used to infer the degree to which the host is experiencing chronic stress, including microbial diversity, flexibility, and gene richness. The goal of this perspective piece is to highlight the underutilized potential of measuring the gut microbiome as a mediator of stress resilience in wild animal hosts.

     
    more » « less
  4. Abstract

    The hypothalamic–pituitary–adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post‐natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis. Here, we manipulated stressors in the parental and post‐natal environments in a population of house sparrows (Passer domesticus) to assess their impact on changes in DNA methylation (and corresponding gene expression) in a suite of genes within the HPA axis. We found that nestlings that experienced early life stress across both life‐history periods had higher DNA methylation in a critical HPA axis gene, the glucocorticoid receptor (NR3C1). In addition, we found that the life‐history stage when stress was encountered impacted some genes (HSD11B1, NR3C1andNR3C2) differently. We also found evidence for the mitigation of parental stress by post‐natal stress (inHSD11B1andNR3C2). Finally, by assessing DNA methylation in both the brain and blood, we were able to evaluate cross‐tissue patterns. While some differentially methylated regions were tissue‐specific, we found cross‐tissue changes inNR3C2andNR3C1, suggesting that blood is a suitable tissue for assessing DNA methylation as a biomarker of early life stress. Our results provide a crucial first step in understanding the mechanisms by which early life stress in different life‐history periods contributes to changes in the epigenome of the HPA axis.

     
    more » « less
  5. ABSTRACT

    Social status directly affects the health of humans and other animals. Low status individuals receive more antagonistic encounters, have fewer supportive relationships and have worse health outcomes. However, the physiological and cellular processes that mediate the relationship between the social environment and health are incompletely known. Epigenetic regulation of the hypothalamic–pituitary–adrenal (HPA) axis, the neuroendocrine pathway that activates in response to stressors, may be one process that is sensitive to the social environment. Here, we experimentally manipulated plumage, a key social signal in female tree swallows (Tachycineta bicolor) and quantified methylation of four genes in the HPA axis before and after treatment. We found that dulling the white breast plumage affected methylation in one gene, CRHR1; however, the effect depended on the original brightness of the bird. Methylation in this gene was correlated with baseline corticosterone levels, suggesting that DNA methylation of CRHR1 helps regulate glucocorticoid production in this species. Methylation in two other genes, FKBP5 and GR, changed over the course of the experiment, independent of treatment. These results show that methylation of these genes is labile into adulthood and suggest that epigenetic regulation of the HPA axis could help birds respond to current environmental conditions.

     
    more » « less