skip to main content


Title: FKBP5 : A Key Mediator of How Vertebrates Flexibly Cope with Adversity
Abstract Flexibility in the regulation of the hypothalamic–pituitary–adrenal (HPA) axis is an important mediator of stress resilience as it helps organisms adjust to, avoid, or compensate for acute and chronic challenges across changing environmental contexts. Glucocorticoids remain the favorite metric from medicine to conservation biology to attempt to quantify stress resilience despite the skepticism around their consistency in relation to individual health, welfare, and fitness. We suggest that a cochaperone molecule related to heat shock proteins and involved in glucocorticoid receptor activity, FKBP5, may mediate HPA flexibility and therefore stress resilience because it affects how individuals can regulate glucocorticoids and therefore capacitates their abilities to adjust phenotypes appropriately to prevailing, adverse conditions. Although the molecule is well studied in the biomedical literature, FKBP5 research in wild vertebrates is limited. In the present article, we highlight the potential major role of FKBP5 as mediator of HPA axis flexibility in response to adversity in humans and lab rodents.  more » « less
Award ID(s):
2027040
NSF-PAR ID:
10283085
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
70
Issue:
12
ISSN:
0006-3568
Page Range / eLocation ID:
1127 to 1138
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Individuals often vary markedly in their ability to cope with stressors, but the drivers of this variation remain poorly understood. Many studies have tested relationships among individual variation in glucocorticoid levels and the response to challenges—often finding inconsistent patterns; however, few have addressed whether variation in the capacity to terminate the stress response through negative feedback is associated with stress resilience.

    While conceptual models predict that interactions among different components of hypothalamic–pituitary–adrenal (HPA) axis regulation may be important predictors of the phenotypic and fitness effects of stress, we are aware of no previous experimental tests of this hypothesis.

    We investigate whether individual variation in HPA axis regulation is related to resilience to experimental challenges in free‐living tree swallows (Tachycineta bicolor). We mimicked salient natural challenges by temporarily reducing flight efficiency or increasing perceived predation risk during incubation, and determined whether HPA axis responsiveness prior to treatments predicted resilience.

    Females that exhibited both a robust HPA axis activation and strong negative feedback were less likely to abandon nests during incubation.

    Our results suggest that exhibiting a strong HPA axis activation coupled with effective negative feedback may predict stress resilience. Therefore, the ability to turn on and then off the HPA axis efficiently may be important for fitness.

    Our results also suggest that the interactions between different components of the HPA axis may provide greater insight into differences in stress coping capacity.

    Aplain language summaryis available for this article.

     
    more » « less
  2. ABSTRACT As a response to environmental cues, maternal glucocorticoids (GCs) may trigger adaptive developmental plasticity in the physiology and behavior of offspring. In North American red squirrels (Tamiasciurus hudsonicus), mothers exhibit increased GCs when conspecific density is elevated, and selection favors more aggressive and perhaps more active mothers under these conditions. We tested the hypothesis that elevated maternal GCs cause shifts in offspring behavior that may prepare them for high-density conditions. We experimentally elevated maternal GCs during gestation or early lactation. We measured two behavioral traits (activity and aggression) in weaned offspring using standardized behavioral assays. Because maternal GCs may influence offspring hypothalamic–pituitary–adrenal (HPA) axis dynamics, which may in turn affect behavior, we also measured the impact of our treatments on offspring HPA axis dynamics (adrenal reactivity and negative feedback), and the association between offspring HPA axis dynamics and behavior. Increased maternal GCs during lactation, but not gestation, slightly elevated activity levels in offspring. Offspring aggression and adrenal reactivity did not differ between treatment groups. Male, but not female, offspring from mothers treated with GCs during pregnancy exhibited stronger negative feedback compared with those from control mothers, but there were no differences in negative feedback between lactation treatment groups. Offspring with higher adrenal reactivity from mothers treated during pregnancy (both controls and GC-treated) exhibited lower aggression and activity. These results suggest that maternal GCs during gestation or early lactation alone may not be a sufficient cue to produce substantial changes in behavioral and physiological stress responses in offspring in natural populations. 
    more » « less
  3. null (Ed.)
    ABSTRACT The hypothalamic–pituitary–adrenal (HPA) axis controls the release of glucocorticoids, which regulate immune and inflammatory function by modulating cytokines, white blood cells and oxidative stress via glucocorticoid receptor (GR) signaling. Although the response to HPA activation is well characterized in many species, little is known about the impacts of HPA activation during extreme physiological conditions. Hence, we challenged 18 simultaneously fasting and developing elephant seal pups with daily intramuscular injections of adrenocorticotropin (ACTH), a GR antagonist (RU486), or a combination of the two (ACTH+RU486) for 4 days. We collected blood at baseline, 2 h and 4 days after the beginning of treatment. ACTH and ACTH+RU486 elevated serum aldosterone and cortisol at 2 h, with effects diminishing at 4 days. RU486 alone induced a compensatory increase in aldosterone, but not cortisol, at 4 days. ACTH decreased neutrophils at 2 h, while decreasing lymphocytes and increasing the neutrophil:lymphocyte ratio at 4 days. These effects were abolished by RU486. Despite alterations in white blood cells, there was no effect of ACTH or RU486 on transforming growth factor-β or interleukin-6 levels; however, both cytokines decreased with the 4 day fasting progression. Similarly, ACTH did not impact protein oxidation, lipid peroxidation or antioxidant enzymes, but plasma isoprostanes and catalase activity decreased while glutathione peroxidase increased with fasting progression. These data demonstrate differential acute (2 h) and chronic (4 days) modulatory effects of HPA activation on white blood cells and that the chronic effect is mediated, at least in part, by GR. These results also underscore elephant seals' extraordinary resistance to oxidative stress derived from repeated HPA activation. 
    more » « less
  4. Saretzki, Gabriele (Ed.)
    Background The neuroendocrine stress response allows vertebrates to cope with stressors via the activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis, which ultimately results in the secretion of glucocorticoids (GCs). Glucocorticoids have pleiotropic effects on behavior and physiology, and might influence telomere length dynamics. During a stress event, GCs mobilize energy towards survival mechanisms rather than to telomere maintenance. Additionally, reactive oxygen species produced in response to increased GC levels can damage telomeres, also leading to telomere shortening. In our systematic review and meta-analysis, we tested whether GC levels impact telomere length and if this relationship differs among time frame, life history stage, or stressor type. We hypothesized that elevated GC levels are linked to a decrease in telomere length. Methods We conducted a literature search for studies investigating the relationship between telomere length and GCs in non-human vertebrates using four search engines: Web of Science, Google Scholar, Pubmed and Scopus, last searched on September 27th, 2020. This review identified 31 studies examining the relationship between GCs and telomere length. We pooled the data using Fisher’s Z for 15 of these studies. All quantitative studies underwent a risk of bias assessment. This systematic review study was registered in the Open Science Framework Registry ( https://osf.io/rqve6 ). Results The pooled effect size from fifteen studies and 1066 study organisms shows no relationship between GCs and telomere length (Fisher’s Z = 0.1042, 95% CI = 0.0235; 0.1836). Our meta-analysis synthesizes results from 15 different taxa from the mammalian, avian, amphibian groups. While these results support some previous findings, other studies have found a direct relationship between GCs and telomere dynamics, suggesting underlying mechanisms or concepts that were not taken into account in our analysis. The risk of bias assessment revealed an overall low risk of bias with occasional instances of bias from missing outcome data or bias in the reported result. Conclusion We highlight the need for more targeted experiments to understand how conditions, such as experimental timeframes, stressor(s), and stressor magnitudes can drive a relationship between the neuroendocrine stress response and telomere length. 
    more » « less
  5. Abstract

    Stress resilience is defined as the ability to rebound to a homeostatic state after exposure to a perturbation. Organisms modulate various physiological mediators to respond to unpredictable changes in their environment. The gut microbiome is a key example of a physiological mediator that coordinates a myriad of host functions including counteracting stressors. Here, we highlight the gut microbiome as a mediator of host stress resilience in the framework of the reactive scope model. The reactive scope model integrates physiological mediators with unpredictable environmental changes to predict how animals respond to stressors. We provide examples of how the gut microbiome responds to stressors within the four ranges of the reactive scope model (i.e., predictive homeostasis, reactive homeostasis, homeostatic overload, and homeostatic failure). We identify measurable metrics of the gut microbiome that could be used to infer the degree to which the host is experiencing chronic stress, including microbial diversity, flexibility, and gene richness. The goal of this perspective piece is to highlight the underutilized potential of measuring the gut microbiome as a mediator of stress resilience in wild animal hosts.

     
    more » « less