skip to main content

Title: Repeated stimulation of the HPA axis alters white blood cell count without increasing oxidative stress or inflammatory cytokines in fasting elephant seal pups
ABSTRACT The hypothalamic–pituitary–adrenal (HPA) axis controls the release of glucocorticoids, which regulate immune and inflammatory function by modulating cytokines, white blood cells and oxidative stress via glucocorticoid receptor (GR) signaling. Although the response to HPA activation is well characterized in many species, little is known about the impacts of HPA activation during extreme physiological conditions. Hence, we challenged 18 simultaneously fasting and developing elephant seal pups with daily intramuscular injections of adrenocorticotropin (ACTH), a GR antagonist (RU486), or a combination of the two (ACTH+RU486) for 4 days. We collected blood at baseline, 2 h and 4 days after the beginning of treatment. ACTH and ACTH+RU486 elevated serum aldosterone and cortisol at 2 h, with effects diminishing at 4 days. RU486 alone induced a compensatory increase in aldosterone, but not cortisol, at 4 days. ACTH decreased neutrophils at 2 h, while decreasing lymphocytes and increasing the neutrophil:lymphocyte ratio at 4 days. These effects were abolished by RU486. Despite alterations in white blood cells, there was no effect of ACTH or RU486 on transforming growth factor-β or interleukin-6 levels; however, both cytokines decreased with the 4 day fasting progression. Similarly, ACTH did not impact protein oxidation, lipid peroxidation or antioxidant enzymes, but plasma isoprostanes and catalase activity decreased while glutathione peroxidase more » increased with fasting progression. These data demonstrate differential acute (2 h) and chronic (4 days) modulatory effects of HPA activation on white blood cells and that the chronic effect is mediated, at least in part, by GR. These results also underscore elephant seals' extraordinary resistance to oxidative stress derived from repeated HPA activation. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Experimental Biology
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite decades of research, we still lack a complete understanding of what factors influence the transition of the necessary and adaptive acute stress response to what has become known as chronic stress. This gap in knowledge has illuminated the necessity for studies that examine the thresholds between these two sides of the stress response. Here, we determine how repeated exposure to acute stressors influences physiological and behavioral responses. In this repeated measures study, house sparrows ( Passer domesticus ) were exposed to a chronic stress protocol. We took physiological and behavioral measurements before, during, and after the protocol. Blood samples were used to assess four aspects of hypothalamic-pituitary-adrenal (HPA) axis function: baseline corticosterone, stress-induced corticosterone, negative feedback, and the maximal capacity to secrete corticosterone. We also assessed bacterial killing capacity and changes in uric acid concentration. Neophobia trials were used to assess behavioral changes throughout the protocol. We found no significant changes in HPA axis regulation in any of the four aspects we tested. However, we found that uric acid concentrations and neophobia significantly decreased after only four days of the chronic stress protocol, while bacterial killing capacity did not decrease until after eight days of exposure. These results indicatemore »that different components of the stress response can be impacted by chronic stress on different timescales. Our results further indicate the importance of assessing multiple aspects of both physiology and behavior in order to understand how exposure to chronic stress may influence ability to cope with future challenges.« less
  2. Do the immortalized and cryopreserved white blood cells that are part of the 1,000 Human Genomes Project represent a valuable cellular physiological resource to investigate the importance of genome wide sequence variation? While much research exists on the nucleotide variation in the 1,000 Human Genomes, there are few quantitative measures of these humans’ physiologies. Fortunately, physiological measures can be done on the immortalized and preserved cells from each of the more than 1,000 individuals that are part of Human Genome project. However, these human white blood cells were immortalized by transforming them with the Epstein-Barr virus (EBV-transformed lymphoblastoid cell lines (LCL)). This transformation integrates the viral genome into the human genome and potentially affects important biological differences among individuals. The questions we address here are whether EBV transformations significantly alters the cellular physiology so that 1) replicate transformations within an individual are significantly different, and 2) whether the variance among replicates obscures the variation among individuals. To address these questions, we quantified oxidative phosphorylation (OxPhos) metabolism in LCLs from six individuals with 4 separate and independent EBV-transformations. We examined OxPhos because it is critical for energy production, and mutations in this pathway are responsible for most inborn metabolic diseases. Themore »data presented here demonstrate that there are small but significant effects of EBV-transformations on some OxPhos parameters. In spite of significant variation due to transformations, there is greater and significant variation among individuals in their OxPhos metabolism. Thus, the LCLs from the 1,000 Human Genome project could provide valuable insights into the natural variation of cellular physiology because there is statistically significant variation among individuals when using these EBV-transformed cells« less
  3. The breakdown of symbiotic mutualism between cnidarian hosts and dinoflagellate algae partners (i.e., bleaching) has been linked to an immune-like response pathway brought on by a nitro-oxidative burst, a symptom of thermal stress. Stress induced by reactive oxygen species (ROS)/reactive nitrogen species is a problem common to aerobic systems. In this study, we tested the antioxidant effects of engineered poly(acrylic acid)-coated cerium dioxide nanoparticles (CeO 2 , nanoceria) on free-living Symbiodiniaceae ( Breviolum minutum ), a dinoflagellate alga that forms symbiotic relationships with reef-building corals and anemones. Results show that poly(acrylic acid)-coated CeO 2 with hydrodynamic diameters of ~4 nm are internalized by B. minutum in under 30 min and subsequently localized in the cytosol. Nanoceria exposure does not inhibit cell growth over time, with the treated cultures showing a similar growth trend over the 25-day exposure. Aerobic activity and thermal stress when held at 34°C for 1 h (+6°C above control) led to increased intracellular ROS concentration with time. A clear ROS scavenging effect of the nanoceria was observed, with a 5-fold decrease in intracellular ROS levels during thermal stress. The nitric oxide (NO) concentration decreased by ~17% with thermal stress, suggesting the rapid involvement of NO scavenging enzymes or proteinsmore »within 1 h of stress onset. The presence of nanoceria did not appear to influence NO concentration. Furthermore, aposymbiotic anemones ( Exaiptasia diaphana , ex Aiptasia pallida ) were successfully infected with nanoceria-loaded B. minutum , demonstrating that inoculation could serve as a delivery method. The ability of nanoceria to be taken up by Symbiodiniaceae and reduce ROS production could be leveraged as a potential mitigation strategy to reduce coral bleaching.« less
  4. Cortisol, a key product of the stress response, has critical influences on degenerative aging in humans. In turn, cortisol production is affected by senescence of the hypothalamic–pituitary–adrenal (HPA) axis, leading to progressive dysregulation and increased cortisol exposure. These processes have been studied extensively in industrialized settings, but few comparative data are available from humans and closely related species living in natural environments, where stressors are very different. Here, we examine age-related changes in urinary cortisol in a 20-y longitudinal study of wild chimpanzees (n= 59 adults) in the Kanyawara community of Kibale National Park, Uganda. We tested for three key features of HPA aging identified in many human studies: increased average levels, a blunted diurnal rhythm, and enhanced response to stressors. Using linear mixed models, we found that aging was associated with a blunting of the diurnal rhythm and a significant linear increase in cortisol, even after controlling for changes in dominance rank. These effects did not differ by sex. Aging did not increase sensitivity to energetic stress or social status. Female chimpanzees experienced their highest levels of cortisol during cycling (versus lactation), and this effect increased with age. Male chimpanzees experienced their highest levels when exposed to sexually attractivemore »females, but this effect was diminished by age. Our results indicate that chimpanzees share some key features of HPA aging with humans. These findings suggest that impairments of HPA regulation are intrinsic to the aging process in hominids and are side effects neither of extended human life span nor of atypical environments.

    « less
  5. The blood-brain barrier (BBB) is a dynamic component of the brain-vascular interface that maintains brain homeostasis and regulates solute permeability into brain tissue. The expression of tight junction proteins between adjacent endothelial cells and the presence of efflux proteins prevents entry of foreign substances into the brain parenchyma. BBB dysfunction, however, is evident in many neurological disorders including ischemic stroke, trauma, and chronic neurodegenerative diseases. Currently, major contributors to BBB dysfunction are not well understood. Here, we employed a multicellular 3D neurovascular unit organoid containing human brain microvascular endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes and neurons to model the effects of hypoxia and neuroinflammation on BBB function. Organoids were cultured in hypoxic chamber with 0.1% O2 for 24 hours. Organoids cultured under this hypoxic condition showed increased permeability, pro-inflammatory cytokine production, and increased oxidative stress. The anti-inflammatory agents, secoisolariciresinol diglucoside and 2-arachidonoyl glycerol, demonstrated protection by reducing inflammatory cytokine levels in the organoids under hypoxic conditions. Through the assessment of a free radical scavenger and an anti-inflammatory endocannabinoid, we hereby report the utility of the model in drug development for drug candidates that may reduce the effects of ROS and inflammation under disease conditions. This 3D organoid model recapitulates characteristics ofmore »BBB dysfunction under hypoxic physiological conditions and when exposed to exogenous neuroinflammatory mediators and hence may have potential in disease modeling and therapeutic development.« less