The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR coexpression on MR genome-wide transcriptional responses and chromatin binding upon activation by aldosterone and glucocorticoids, both physiological ligands of this receptor. Transcriptional responses of MR in the absence of GR result in fewer regulated genes. In contrast, coexpression of GR potentiates MR-mediated transcription, particularly in response to aldosterone, both in cell lines and in the more physiologically relevant model of mouse colon organoids. MR chromatin binding is altered by GR coexpression in a locus- and ligand-specific way. Single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that coexpression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
more »
« less
Repeated stimulation of the HPA axis alters white blood cell count without increasing oxidative stress or inflammatory cytokines in fasting elephant seal pups
ABSTRACT The hypothalamic–pituitary–adrenal (HPA) axis controls the release of glucocorticoids, which regulate immune and inflammatory function by modulating cytokines, white blood cells and oxidative stress via glucocorticoid receptor (GR) signaling. Although the response to HPA activation is well characterized in many species, little is known about the impacts of HPA activation during extreme physiological conditions. Hence, we challenged 18 simultaneously fasting and developing elephant seal pups with daily intramuscular injections of adrenocorticotropin (ACTH), a GR antagonist (RU486), or a combination of the two (ACTH+RU486) for 4 days. We collected blood at baseline, 2 h and 4 days after the beginning of treatment. ACTH and ACTH+RU486 elevated serum aldosterone and cortisol at 2 h, with effects diminishing at 4 days. RU486 alone induced a compensatory increase in aldosterone, but not cortisol, at 4 days. ACTH decreased neutrophils at 2 h, while decreasing lymphocytes and increasing the neutrophil:lymphocyte ratio at 4 days. These effects were abolished by RU486. Despite alterations in white blood cells, there was no effect of ACTH or RU486 on transforming growth factor-β or interleukin-6 levels; however, both cytokines decreased with the 4 day fasting progression. Similarly, ACTH did not impact protein oxidation, lipid peroxidation or antioxidant enzymes, but plasma isoprostanes and catalase activity decreased while glutathione peroxidase increased with fasting progression. These data demonstrate differential acute (2 h) and chronic (4 days) modulatory effects of HPA activation on white blood cells and that the chronic effect is mediated, at least in part, by GR. These results also underscore elephant seals' extraordinary resistance to oxidative stress derived from repeated HPA activation.
more »
« less
- Award ID(s):
- 1907155
- PAR ID:
- 10300887
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 224
- Issue:
- 18
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Chronic brain hypoperfusion is the primary cause of vascular dementia and has been implicated in the development of white matter disease and lacunar infarcts. Cerebral hypoperfusion leads to a chronic state of brain inflammation with immune cell activation and production of pro-inflammatory cytokines, including IL-1β. In the present study, we induced chronic, progressive brain hypoperfusion in mice using ameroid constrictor, arterial stenosis (ACAS) surgery and tested the efficacy of an IL-1β antibody on the resulting brain damage. We observed that ACAS surgery causes a reduction in cerebral blood flow (CBF) of about 30% and grey and white matter damage in and around the hippocampus. The IL-1β antibody treatment did not significantly affect CBF but largely eliminated grey matter damage and reduced white matter damage caused by ACAS surgery. Over the course of hypoperfusion/injury, grip strength, coordination, and memory-related behavior were not significantly affected by ACAS surgery or antibody treatment. We conclude that antibody neutralization of IL-1β is protective from the brain damage caused by chronic, progressive brain hypoperfusion.more » « less
-
Despite decades of research, we still lack a complete understanding of what factors influence the transition of the necessary and adaptive acute stress response to what has become known as chronic stress. This gap in knowledge has illuminated the necessity for studies that examine the thresholds between these two sides of the stress response. Here, we determine how repeated exposure to acute stressors influences physiological and behavioral responses. In this repeated measures study, house sparrows ( Passer domesticus ) were exposed to a chronic stress protocol. We took physiological and behavioral measurements before, during, and after the protocol. Blood samples were used to assess four aspects of hypothalamic-pituitary-adrenal (HPA) axis function: baseline corticosterone, stress-induced corticosterone, negative feedback, and the maximal capacity to secrete corticosterone. We also assessed bacterial killing capacity and changes in uric acid concentration. Neophobia trials were used to assess behavioral changes throughout the protocol. We found no significant changes in HPA axis regulation in any of the four aspects we tested. However, we found that uric acid concentrations and neophobia significantly decreased after only four days of the chronic stress protocol, while bacterial killing capacity did not decrease until after eight days of exposure. These results indicate that different components of the stress response can be impacted by chronic stress on different timescales. Our results further indicate the importance of assessing multiple aspects of both physiology and behavior in order to understand how exposure to chronic stress may influence ability to cope with future challenges.more » « less
-
Abstract Corticosteroids are so vital for organ maturation that reduced corticosteroid signaling during postembryonic development causes death in terrestrial vertebrates. Indeed, death occurs at metamorphosis in frogs lacking proopiomelanocortin (pomc) or the glucocorticoid receptor (GR; nr3c1). Some residual corticosteroids exist in pomc mutants to activate the wild-type (WT) GR and mineralocorticoid receptor (MR), and the elevated corticosteroids in GR mutants may activate MR. Thus, we expected a more severe developmental phenotype in tadpoles with inactivation of 21-hydroxylase, which should eliminate all interrenal corticosteroid biosynthesis. Using CRISPR/Cas9 in Xenopus tropicalis, we produced an 11-base pair deletion in cyp21a2, the gene encoding 21-hydroxylase. Growth and development were delayed in cyp21a2 mutant tadpoles, but unlike the other frog models, they survived metamorphosis. Consistent with an absence of 21-hydroxylase, mutant tadpoles had a 95% reduction of aldosterone in tail tissue, but they retained some corticosterone (∼40% of WT siblings), an amount, however, too low for survival in pomc mutants. Decreased corticosteroid signaling was evidenced by reduced expression of corticosteroid-response gene, klf9, and by impaired negative feedback in the hypothalamus-pituitary-interrenal axis with higher messenger RNA expression levels of crh, pomc, star, and cyp11b2 and an approximately 30-fold increase in tail content of progesterone. In vitro tail-tip culture showed that progesterone can transactivate the frog GR. The inadequate activation of GR by corticosterone in cyp21a2 mutants was likely compensated for by sufficient corticosteroid signaling from other GR ligands to allow survival through the developmental transition from aquatic to terrestrial life.more » « less
-
Avoidance of novel stimuli (neophobia) affects how wild animals interact with their environment and may partly determine whether animals persist in human-altered landscapes. The neuroendocrine mediators of neophobia are poorly understood, although past work demonstrated that experimentally reducing circulating corticosterone in wild-caught house sparrows (Passer domesticus) decreased neophobia toward novel objects placed near the food dish. In this experiment, we directly tested the role of one of the two types of corticosterone receptors, the glucocorticoid receptor (GR), in mediating neophobia in house sparrows by administering a GR antagonist (RU486, n = 10) or a vehicle control (peanut oil, n = 10) over 5 consecutive days and measuring responses to novel objects both pre- and post-treatment. We also measured baseline and stress-induced corticosterone in all sparrows on the final day of behavior trials. To better understand the effects of RU486 on corticosterone over time, in a separate group of sparrows (n = 12) we administered RU486 or vehicle over 5 days and took multiple blood samples to assess baseline and stress-induced corticosterone. Overall, we did not detect an effect of subcutaneous RU486 injections on neophobia behavior. However, we did find that RU486 injections significantly decreased stress-induced corticosterone levels starting 1 day post-injection and baseline corticosterone levels starting 6 days post-injection, compared to vehicle-injected controls. Our results suggest that GR is not involved in mediating neophobia behavior in house sparrows.more » « less
An official website of the United States government

