skip to main content


Title: Continuous simulations over the last 40 million years with a coupled Antarctic ice sheet-sediment model
Much of the knowledge of Antarctic Ice Sheet variations since its inception ~34 Ma derives from marine sediments on the continental shelf, deposited in glacimarine or sub-ice environments by advancing and retreating grounded ice, and observed today by seismic profiling and coring. Here we apply a 3-D coupled ice sheet and sediment model from 40 Ma to the present, with the goal of directly linking ice-sheet variations with the sediment record. The ice-sheet model uses vertically averaged ice dynamics and parameterized grounding-line flux. The sediment model includes quarrying of bedrock, sub-ice transport, and marine deposition. Atmospheric and oceanic forcing are determined by uniform shifts to modern climatology in proportion to records of atmospheric CO2, deep-sea-core δ18O, and orbital insolation variations. The model is run continuously over the last 40 Myr at coarse resolution (80 or 160 km), modeling post-Eocene ice, landscape evolution and off-shore sediment packages in a single self-consistent simulation. Strata and unconformities are tracked by recording times of deposition within the model sediment stacks, which can be compared directly with observed seismic profiles. The initial bedrock topography is initialized to 34 Ma geologic reconstructions, or an iterative procedure is used that yields independent estimates of paleo bedrock topography. Preliminary results are compared with recognized Cenozoic ice-sheet variations, modern sediment distributions and seismic profiles, and modern and paleo bedrock topographies.  more » « less
Award ID(s):
1663693
NSF-PAR ID:
10283144
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Palaeogeography palaeoclimatology palaeoecology
Volume:
537
ISSN:
0031-0182
Page Range / eLocation ID:
109374
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Much of the knowledge of Antarctic Ice Sheet variations since its inception ∼34 Ma derives from marine sediments on the continental shelf, deposited in glacimarine or sub-ice environments by advancing and retreating grounded ice, and observed today by seismic profiling and coring. If coupled ice-sheet and sediment models can simulate these deposits explicitly, direct comparisons with the sediment record would help in linking it to Cenozoic ice and climate history. Here we apply an existing 3-D ice sheet and sediment model to the whole period of late Cenozoic Antarctic evolution. The ice-sheet model uses local parameterizations of grounding-line flux, ice-shelf hydrofracture and ice cliff failure. The sediment model includes quarrying of bedrock, sub-ice transport, and marine deposition. Atmospheric and oceanic forcing is determined by uniform shifts to modern climatology in proportion to records of atmospheric CO2, deep-sea-core d18O, and orbital insolation variations. Initial ice-free bedrock topography can either be prescribed from geologic reconstructions for ∼34 Ma (Wilson et al., Palaeo3, 2011) or deduced in an iterative procedure fitting to observed modern topography and total sediment amounts. The model is run continuously from 40 Ma to the present, capturing post-Eocene Antarctic landscape evolution and off-shore sediment packages in a single self-consistent simulation. In order to make these long simulations feasible, the model resolution is very coarse, 80 km. However the ice model’s use of local parameterizations for fine-scale dynamical processes yields results that are not seriously degraded compared to finer resolutions in short tests. The primary goals are (1) to reproduce major recognized ice-sheet trends and fluctuations from the Eocene to today, and (2) to produce a 3-D model map of modern sediment deposits. "Strata" are tracked by recording times of deposition within the model sediment stacks, which can be compared with observed seismic profiles. Initial results are presented, and preliminary overall comparisons are made with observed sediment packages and the modern ice and bedrock state. 
    more » « less
  2. Much of the knowledge of Antarctic Ice Sheet variations since its inception ~34 Ma derives from marine sediments on the continental shelf, deposited in glacimarine or sub-ice environments by advancing and retreating grounded ice, and observed today by seismic profiling and coring. If coupled ice-sheet and sediment models can simulate these deposits explicitly, direct comparisons with the sediment record would be valuable in linking it to Cenozoic ice and climate history. Here we apply an existing 3-D ice sheet and sediment model to the whole period of late Cenozoic Antarctic evolution. The ice-sheet model uses local parameterizations of grounding-line flux, ice-shelf hydrofracture and ice cliff failure. The sediment model includes quarrying of bedrock, sub-ice transport, and marine deposition. Atmospheric and oceanic forcing is determined by uniform shifts to modern climatology in proportion to records of atmospheric CO2, deep-sea-core d18O, and orbital insolation variations. Initial ice-free and sediment-free bedrock topography is prescribed from the 34 Ma reconstruction of Wilson et al., Palaeo3, 2011, and their estimated rate of tectonic subsidence is applied in West Antarctica. The model is run continuously from 34 Ma to the present, to capture the entire post-Eocene Antarctic landscape evolution and off-shore sediment packages in a single self-consistent simulation. In order to make these long simulations feasible, the model resolution is very coarse, 80 km. However the ice model's use of local parameterizations for fine-scale dynamical processes yields results that are not seriously degraded compared to finer resolutions in short tests. The primary goals are (1) to reproduce major recognized ice-sheet trends and fluctuations from the Eocene to today, and (2) to produce a 3-D model map of modern sediment deposits. "Strata" are tracked by recording times of deposition within the model sediment stacks. Unconformities in these strata occur in the model that can be compared with observed profiles. Initial results are presented, and preliminary overall comparisons are made with observed sediment packages, focusing on sensitivities to climate forcing, quarrying rates, and sediment parameters that stand in for alternate sediment rheologies. 
    more » « less
  3. Bedrock topography is a key boundary condition for ice sheet modeling, and determining changes in subglacial topography through time can provide insight into the timing of ice sheet development, the magnitude of glacial erosion, and the co-development of glaciers and glacial topography. West Antarctica hosts an unusually high geothermal gradient supported by hot, low-viscosity mantle which likely enhanced the lithospheric response to West Antarctic Ice Sheet (WAIS) cycles of growth and increased the sensitivity of thermochronometers to landscape evolution on million-year timescales. Thus, a valuable record of glacial landscape change might be recovered from apatite fission track [AFT 80-130°C range] and (U-Th)/He [AHe; 50-90°C] dating, provided that landscape evolution can be distinguished from tectonic signals, including the effects of faults. This study utilizes AFT-AHe thermochronology and thermo-kinematic Pecube modeling to investigate interactions between the hot geotherm, glacial erosion, and inferred crustal structures in the Ford Ranges and the DeVicq Glacier trough in western and central Marie Byrd Land (MBL), respectively. The Ford Ranges host glacial troughs (up to 3km relief) dissecting a low-relief erosional surface. Previous work suggests a majority of bedrock exhumation and cooling occurred at/by 80 Ma. However, new data hint at renewed exhumation linked to glacial incision since WAIS formation at 34 or 20 Ma. Prior (U-Th)/He zircon dates from exposures of crystalline bedrock span 90 – 67 Ma. New AHe bedrock dates are 41 to 26 Ma, while two glacial erratics (presumed to be eroded from walls or floor of glacial troughs) yielded AHe dates of 37 Ma and 16 Ma. Initial modeling results suggest a tectonic boundary between the Ford Ranges and Edward VII Peninsula separating regions with distinct exhumation histories. The boundary may cause differential WAIS incision at 34 or 20 Ma, a possibility being investigated with new models. The DeVicq Glacier trough (>3.5km relief) coincides with a prominent crustal lineament but lacks temperature-time information compared to other regions. The crustal structure may have accommodated motion between elevated central MBL and the subdued crust of the Ford Ranges. Here, owing to the lack of onshore non-volcanic bedrock exposure, we have employed AHe and AFT dating of glacial sediment marine core samples offshore of the DeVicq Glacier to investigate the timing and rates of exhumation of the bedrock carved by the DeVicq trough, with initial results revealing detrital AHe ages as young as 24 Ma. Our new Pecube models test a series of thermal, tectonic, and landscape evolution scenarios against a suite of thermochronologic data, allowing us to assess the timing of glacial incision and WAIS initiation in the Ford Ranges, and to seek evidence of an inferred tectonic boundary at DeVicq Trough. Modeling efforts will be aided by new AHe and AFT analyses from ongoing work. These models combine topographic, tectonic, thermal, and key thermochronologic datasets to produce new insight into the unique cryosphere-lithosphere interactions affecting landscape change in West Antarctica. 
    more » « less
  4. Abstract Oscillations in ice sheet extent during early and middle Miocene are intermittently preserved in the sedimentary record from the Antarctic continental shelf, with widespread erosion occurring during major ice sheet advances, and open marine deposition during times of ice sheet retreat. Data from seismic reflection surveys and drill sites from Deep Sea Drilling Project Leg 28 and International Ocean Discovery Program Expedition 374, located across the present-day middle continental shelf of the central Ross Sea (Antarctica), indicate the presence of expanded early to middle Miocene sedimentary sections. These include the Miocene climate optimum (MCO ca. 17–14.6 Ma) and the middle Miocene climate transition (MMCT ca. 14.6–13.9 Ma). Here, we correlate drill core records, wireline logs and reflection seismic data to elucidate the depositional architecture of the continental shelf and reconstruct the evolution and variability of dynamic ice sheets in the Ross Sea during the Miocene. Drill-site data are used to constrain seismic isopach maps that document the evolution of different ice sheets and ice caps which influenced sedimentary processes in the Ross Sea through the early to middle Miocene. In the early Miocene, periods of localized advance of the ice margin are revealed by the formation of thick sediment wedges prograding into the basins. At this time, morainal bank complexes are distinguished along the basin margins suggesting sediment supply derived from marine-terminating glaciers. During the MCO, biosiliceous-bearing sediments are regionally mapped within the depocenters of the major sedimentary basin across the Ross Sea, indicative of widespread open marine deposition with reduced glacimarine influence. At the MMCT, a distinct erosive surface is interpreted as representing large-scale marine-based ice sheet advance over most of the Ross Sea paleo-continental shelf. The regional mapping of the seismic stratigraphic architecture and its correlation to drilling data indicate a regional transition through the Miocene from growth of ice caps and inland ice sheets with marine-terminating margins, to widespread marine-based ice sheets extending across the outer continental shelf in the Ross Sea. 
    more » « less
  5. The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting under ice shelves and at the grounding line of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions. The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives are: 1. To test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions; 2. To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures; 3. To study the stability of a marine-based WAIS margin and how warm deepwater incursions control its position on the shelf; 4. To find evidence for the earliest major grounded WAIS advances onto the middle and outer shelf; 5. To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome. International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called the Resolution Drift, and it penetrated to 794 m with 90% recovery. We collected almost-continuous cores from recent age through the Pleistocene and Pliocene and into the upper Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin. Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives: 1. The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites. 2. The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site. 3. A medical evacuation cut the expedition short by 1 week. Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to indicate the extent of grounded ice on the shelf or, thus, of its retreat directly. However, the sediments contained in these cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by sediments with higher microfossil abundance, greater bioturbation, and higher IRD concentrations alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published late Quaternary records from the region suggests that the units interpreted to be records of warmer time intervals in the core tie to global interglacial periods and the units interpreted to be deposits of colder periods tie to global glacial periods. Cores from the two drill sites recovered sediments of dominantly terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded silts, sands, and gravels transported downslope from the shelf to the rise. The channel is likely the pathway of these sediments transported by turbidity currents and other gravitational downslope processes. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica during longer time periods since at least the late Miocene. Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy for the entire Amundsen Sea continental rise, spanning the area offshore from the Amundsen Sea Embayment westward along the Marie Byrd Land margin to the easternmost Ross Sea through a connecting network of seismic lines. 
    more » « less