skip to main content


Search for: All records

Award ID contains: 1663693

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Much of the knowledge of Antarctic Ice Sheet variations since its inception ~34 Ma derives from marine sediments on the continental shelf, deposited in glacimarine or sub-ice environments by advancing and retreating grounded ice, and observed today by seismic profiling and coring. Here we apply a 3-D coupled ice sheet and sediment model from 40 Ma to the present, with the goal of directly linking ice-sheet variations with the sediment record. The ice-sheet model uses vertically averaged ice dynamics and parameterized grounding-line flux. The sediment model includes quarrying of bedrock, sub-ice transport, and marine deposition. Atmospheric and oceanic forcing are determined by uniform shifts to modern climatology in proportion to records of atmospheric CO2, deep-sea-core δ18O, and orbital insolation variations. The model is run continuously over the last 40 Myr at coarse resolution (80 or 160 km), modeling post-Eocene ice, landscape evolution and off-shore sediment packages in a single self-consistent simulation. Strata and unconformities are tracked by recording times of deposition within the model sediment stacks, which can be compared directly with observed seismic profiles. The initial bedrock topography is initialized to 34 Ma geologic reconstructions, or an iterative procedure is used that yields independent estimates of paleo bedrock topography. Preliminary results are compared with recognized Cenozoic ice-sheet variations, modern sediment distributions and seismic profiles, and modern and paleo bedrock topographies. 
    more » « less
  2. null (Ed.)
    The use of a boundary-layer parameterization of buttressing and ice flux across grounding lines in a two dimensional ice-sheet model is improved by allowing general orientations of the grounding line. This and another modification to the model’s grounding-line parameterization are assessed in three settings: rectangular fjord-like domains – the third Marine Ice Sheet Model Intercomparison Project (MISMIPC) and Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d) – and future simulations of West Antarctic ice retreat under Representative Concentration Pathway (RCP) 8.5-based climates. The new modifications are found to have significant effects on the fjord-like results, which are now within the envelopes of other models in the MISMIP+ and MISMIP3d intercomparisons. In contrast, the modifications have little effect on West Antarctic retreat, presumably because dynamics in the wider major Antarctic basins are adequately represented by the model’s previous simpler one-dimensional formulation. As future grounding lines retreat across very deep bedrock topography in the West Antarctic simulations, buttressing is weak and deviatoric stress measures exceed the ice yield stress, implying that structural failure at these grounding lines would occur. We suggest that these grounding-line quantities should be examined in similar projections by other ice models to better assess the potential for future structural failure. 
    more » « less
  3. Rapidly retreating thick ice fronts can generate large amounts of mélange (floating ice debris), which may affect episodes of rapid retreat of Antarctic marine ice. In modern Greenland fjords, mélange provides substantial back pressure on calving ice faces, which slows ice-front velocities and calving rates. On the much larger scales of West Antarctica, it is unknown if mélange could clog seaways and provide enough back pressure to act as a negative feedback slowing retreat. Here we describe a new mélange model, using a continuum mechanical formulation that is computationally feasible for long-term continental Antarctic applications. It is tested in an idealized rectangular channel, and calibrated very basically using observed modern conditions in Jakobshavn fjord, West Greenland. The model is then applied to drastic retreat of Antarctic ice in response to warm mid-Pliocene climate. With mélange parameter values that yield reasonable modern Jakobshavn results, Antarctic marine ice still retreats drastically in the Pliocene simulations, with little slowdown despite the huge amounts of mélange generated. This holds both for the rapid early collapse of West Antarctica, and later retreat into major East Antarctic basins. If parameter values are changed to make the mélange much more resistive to flow, far outside the range for reasonable Jakobshavn results, West Antarctica still collapses and retreat is slowed or prevented only in a few East Antarctic basins. 
    more » « less