- PAR ID:
- 10283184
- Date Published:
- Journal Name:
- Proeedings of the International Workshop on Artificial Intelligence and Statistics
- Volume:
- 24
- ISSN:
- 1525-531X
- Page Range / eLocation ID:
- 1540-1548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Markov chain Monte Carlo algorithms have important applications in counting problems and in machine learning problems, settings that involve estimating quantities that are difficult to compute exactly. How much can quantum computers speed up classical Markov chain algorithms? In this work we consider the problem of speeding up simulated annealing algorithms, where the stationary distributions of the Markov chains are Gibbs distributions at temperatures specified according to an annealing schedule. We construct a quantum algorithm that both adaptively constructs an annealing schedule and quantum samples at each temperature. Our adaptive annealing schedule roughly matches the length of the best classical adaptive annealing schedules and improves on nonadaptive temperature schedules by roughly a quadratic factor. Our dependence on the Markov chain gap matches other quantum algorithms and is quadratically better than what classical Markov chains achieve. Our algorithm is the first to combine both of these quadratic improvements. Like other quantum walk algorithms, it also improves on classical algorithms by producing “qsamples” instead of classical samples. This means preparing quantum states whose amplitudes are the square roots of the target probability distribution. In constructing the annealing schedule we make use of amplitude estimation, and we introduce a method for making amplitude estimation nondestructive at almost no additional cost, a result that may have independent interest. Finally we demonstrate how this quantum simulated annealing algorithm can be applied to the problems of estimating partition functions and Bayesian inference.more » « less
-
Abstract Neuromorphic hardware implementation of Boltzmann Machine using a network of stochastic neurons can allow non-deterministic polynomial-time (NP) hard combinatorial optimization problems to be efficiently solved. Efficient implementation of such Boltzmann Machine with simulated annealing desires the statistical parameters of the stochastic neurons to be dynamically tunable, however, there has been limited research on stochastic semiconductor devices with controllable statistical distributions. Here, we demonstrate a reconfigurable tin oxide (SnO x )/molybdenum disulfide (MoS 2 ) heterogeneous memristive device that can realize tunable stochastic dynamics in its output sampling characteristics. The device can sample exponential-class sigmoidal distributions analogous to the Fermi-Dirac distribution of physical systems with quantitatively defined tunable “temperature” effect. A BM composed of these tunable stochastic neuron devices, which can enable simulated annealing with designed “cooling” strategies, is conducted to solve the MAX-SAT, a representative in NP-hard combinatorial optimization problems. Quantitative insights into the effect of different “cooling” strategies on improving the BM optimization process efficiency are also provided.more » « less
-
Abstract Quantum annealing (QA) is a continuous-time heuristic quantum algorithm for solving or approximately solving classical optimization problems. The algorithm uses a schedule to interpolate between a driver Hamiltonian with an easy-to-prepare ground state and a problem Hamiltonian whose ground state encodes solutions to an optimization problem. The standard implementation relies on the evolution being adiabatic: keeping the system in the instantaneous ground state with high probability and requiring a time scale inversely related to the minimum energy gap between the instantaneous ground and excited states. However, adiabatic evolution can lead to evolution times that scale exponentially with the system size, even for computationally simple problems. Here, we study whether non-adiabatic evolutions with optimized annealing schedules can bypass this exponential slowdown for one such class of problems called the frustrated ring model. For sufficiently optimized annealing schedules and system sizes of up to 39 qubits, we provide numerical evidence that we can avoid the exponential slowdown. Our work highlights the potential of highly-controllable QA to circumvent bottlenecks associated with the standard implementation of QA.
-
Oh, A ; Naumann, T ; Globerson, A ; Saenko, K ; Hardt, M ; Levine, S (Ed.)We investigate replicable learning algorithms. Informally a learning algorithm is replicable if the algorithm outputs the same canonical hypothesis over multiple runs with high probability, even when different runs observe a different set of samples from the unknown data distribution. In general, such a strong notion of replicability is not achievable. Thus we consider two feasible notions of replicability called {\em list replicability} and {\em certificate replicability}. Intuitively, these notions capture the degree of (non) replicability. The goal is to design learning algorithms with optimal list and certificate complexities while minimizing the sample complexity. Our contributions are the following. 1. We first study the learning task of estimating the biases of $d$ coins, up to an additive error of $\varepsilon$, by observing samples. For this task, we design a $(d+1)$-list replicable algorithm. To complement this result, we establish that the list complexity is optimal, i.e there are no learning algorithms with a list size smaller than $d+1$ for this task. We also design learning algorithms with certificate complexity $\tilde{O}(\log d)$. The sample complexity of both these algorithms is $\tilde{O}(\frac{d^2}{\varepsilon^2})$ where $\varepsilon$ is the approximation error parameter (for a constant error probability). 2. In the PAC model, we show that any hypothesis class that is learnable with $d$-nonadaptive statistical queries can be learned via a $(d+1)$-list replicable algorithm and also via a $\tilde{O}(\log d)$-certificate replicable algorithm. The sample complexity of both these algorithms is $\tilde{O}(\frac{d^2}{\nu^2})$ where $\nu$ is the approximation error of the statistical query. We also show that for the concept class \dtep, the list complexity is exactly $d+1$ with respect to the uniform distribution. To establish our upper bound results we use rounding schemes induced by geometric partitions with certain properties. We use Sperner/KKM Lemma to establish the lower bound results.more » « less
-
We show how any PAC learning algorithm that works under the uniform distribution can be transformed, in a blackbox fashion, into one that works under an arbitrary and unknown distribution D. The efficiency of our transformation scales with the inherent complexity of D, running in (n, (md)d) time for distributions over n whose pmfs are computed by depth-d decision trees, where m is the sample complexity of the original algorithm. For monotone distributions our transformation uses only samples from D, and for general ones it uses subcube conditioning samples. A key technical ingredient is an algorithm which, given the aforementioned access to D, produces an optimal decision tree decomposition of D: an approximation of D as a mixture of uniform distributions over disjoint subcubes. With this decomposition in hand, we run the uniform-distribution learner on each subcube and combine the hypotheses using the decision tree. This algorithmic decomposition lemma also yields new algorithms for learning decision tree distributions with runtimes that exponentially improve on the prior state of the art—results of independent interest in distribution learning.more » « less