Interfacial Polarization and Ionic Structure at the Ionic Liquid–Metal Interface Studied by Vibrational Spectroscopy and Molecular Dynamics Simulations
- Award ID(s):
- 1829555
- PAR ID:
- 10283343
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry B
- Volume:
- 125
- Issue:
- 10
- ISSN:
- 1520-6106
- Page Range / eLocation ID:
- 2741 to 2753
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Molecular ionic composites (MICs) are a new class of solid electrolytes that combine ionic liquids (ILs) and a rigid-rod double helical polyelectrolyte, poly(2,2′-disulfonyl-4,4′benzidine terephthalamide) (PBDT). In this study, we focus on the mechanical, dielectric, and ion diffusive dynamics of MICs with a fixed PBDT weight percent (10 wt%) and varying IL chemistry and molecular volume ( V m ). All six MICs produce tensile moduli in the range of 50–500 MPa at 30 °C, up to 60× higher than the shear moduli of the same MICs. The high range of moduli and tensile to shear modulus ratio emphasizes that the distribution of PBDT chains and the strong ionic interactions between IL ions and PBDT chains dictate the modulus and the mechanical strength in MICs. Additionally, these MICs exhibit high ionic conductivities ranging from 1–6 mS cm −1 at 30 °C, consistent with the measured diffusion coefficients of the IL ions. The tunability of the extraordinary mechanical properties and high ionic conductivities of MIC electrolytes greatly inspire their use in advanced electrochemical devices.more » « less
-
The first study of the flexo-ionic effect, i.e., mechanical deformation-induced electric signal, of the recently discovered ionic liquid crystal elastomers (iLCEs) is reported. The measured flexo-ionic coefficients were found to strongly depend on the director alignment of the iLCE films and can be over 200 µC/m. This value is orders of magnitude higher than the flexo-electric coefficient found in insulating liquid crystals and is comparable to the well-developed ionic polymers (iEAPs). The shortest response times, i.e., the largest bandwidth of the flexo-ionic responses, is achieved in planar alignment, when the director is uniformly parallel to the substrates. These results render high potential for iLCE-based devices for applications in sensors and wearable micropower generators.more » « less