This is a Complete Research paper. Understanding models is important for engineering students, but not often taught explicitly in first-year courses. Although there are many types of models in engineering, studies have shown that engineering students most commonly identify prototyping or physical models when asked about modeling. In order to evaluate students’ understanding of different types of models used in engineering and the effectiveness of interventions designed to teach modeling, a survey was developed. This paper describes development of a framework to categorize the types of engineering models that first-year engineering students discuss based on both previous literature and students’ responses to survey questions about models. In Fall 2019, the survey was administered to first-year engineering students to investigate their awareness of types of models and understanding of how to apply different types of models in solving engineering problems. Students’ responses to three questions from the survey were analyzed in this study: 1. What is a model in science, technology, engineering, and mathematics (STEM) fields?, 2. List different types of models that you can think of., and 3. Describe each different type of model you listed. Responses were categorized by model type and the framework was updated through an iterativemore »
Types of Models Identified by First-Year Engineering Students
Understanding models is important for engineering students, but not often taught explicitly in first-year courses. Although there are many types of models in engineering, studies have shown that engineering students most commonly identify prototyping or physical models when asked about modeling. In order to evaluate students’ understanding of different types of models used in engineering and the effectiveness of interventions designed to teach modeling, a survey was developed. This paper describes development of a framework to categorize the types of engineering models that first-year engineering students discuss based on both previous literature and students’ responses to survey questions about models. In Fall 2019, the survey was administered to first-year engineering students to investigate their awareness of types of models and understanding of how to apply different types of models in solving engineering problems. Students’ responses to three questions from the survey were analyzed in this study: 1. What is a model in science, technology, engineering, and mathematics (STEM) fields?, 2. List different types of models that you can think of., and 3. Describe each different type of model you listed. Responses were categorized by model type and the framework was updated through an iterative coding process. After four rounds of more »
- Award ID(s):
- 1827392
- Publication Date:
- NSF-PAR ID:
- 10283567
- Journal Name:
- Zone 1 Conference of the American Society for Engineering Education
- ISSN:
- 2332-368X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This Research paper discusses the opportunities that utilizing a computer program can present in analyzing large amounts of qualitative data collected through a survey tool. When working with longitudinal qualitative data, there are many challenges that researchers face. The coding scheme may evolve over time requiring re-coding of early data. There may be long periods of time between data analysis. Typically, multiple researchers will participate in the coding, but this may introduce bias or inconsistencies. Ideally the same researchers would be analyzing the data, but often there is some turnover in the team, particularly when students assist with the coding. Computer programs can enable automated or semi-automated coding helping to reduce errors and inconsistencies in the coded data. In this study, a modeling survey was developed to assess student awareness of model types and administered in four first-year engineering courses across the three universities over the span of three years. The data collected from this survey consists of over 4,000 students’ open-ended responses to three questions about types of models in science, technology, engineering, and mathematics (STEM) fields. A coding scheme was developed to identify and categorize model types in student responses. Over two years, two undergraduate researchers analyzed amore »
-
Contribution: This study assesses more than 800 students' awareness of engineering model types before and after taking two first-year engineering courses across two semesters and evaluates the effect of each course. Background: All engineers must be able to apply and create models to be effective problem solvers, critical thinkers, and innovative designers. To help them develop these skills, as a first step, it is essential to assess how to increase students' awareness of engineering models. According to Bloom's taxonomy, the lower remember and understand levels, which encompass awareness, are necessary for achieving the higher levels, such as apply, analyze, evaluate, and create. Research Questions: To what extent did student awareness of model types change after taking introductory engineering courses? To what extent did student awareness of model types differ by course or semester? Methodology: In this study, a survey was designed and administered at the beginning and end of the semester in two first-year engineering courses during two semesters in a mid-sized private school. The survey asked students questions about their definition of engineering modeling and different types of models. Findings: Overall, student awareness of model types increased from the beginning of the semester toward the end of the semester,more »
-
Engineers must understand how to build, apply, and adapt various types of models in order to be successful. Throughout undergraduate engineering education, modeling is fundamental for many core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching modeling, particularly in the first years of an engineering program. The research questions that drove this study are: (1) How do students’ solutions to a complex, open-ended problem (both written and coded solutions) develop over the course of multiple submissions? and (2) How do these developments compare across groups of students that did and did not participate in a course centered around modeling?. Students’ solutions to an open-ended problem across multiple sections of an introductory programming course were explored. These sections were all divided across two groups: (1) experimental group - these sections discussed and utilized mathematical and computational models explicitly throughout the course, and (2) comparison group - these sections focused on developing algorithms and writing code with a more traditional approach. All sections required students to complete a common open-ended problem that consisted of two versions of the problem (the first version with smaller data set and the other a larger data set). Each version hadmore »
-
Engineers must understand how to build, apply, and adapt various types of models in order to be successful. Throughout undergraduate engineering education, modeling is fundamental for many core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching modeling, particularly in the first years of an engineering program. The research questions that drove this study are: (1) How do students’ solutions to a complex, open-ended problem (both written and coded solutions) develop over the course of multiple submissions? and (2) How do these developments compare across groups of students that did and did not participate in a course centered around modeling?. Students’ solutions to an open-ended problem across multiple sections of an introductory programming course were explored. These sections were all divided across two groups: (1) experimental group - these sections discussed and utilized mathematical and computational models explicitly throughout the course, and (2) comparison group - these sections focused on developing algorithms and writing code with a more traditional approach. All sections required students to complete a common open-ended problem that consisted of two versions of the problem (the first version with smaller data set and the other a larger data set). Each version hadmore »