This work in progress paper presents an example of conducting a systematic literature review (SLR) to understand students’ affective response to active learning practices, and it focuses on the development and testing of a coding form for analyzing the literature. Specifically, the full paper seeks to answer: (1) what affective responses do instructors measure, (2) what evidence is used to study those responses, and (3) how are course features connected with student response. We conducted database searches with carefully-defined search queries which resulted in 2,365 abstracts from 1990 to 2015. Each abstract was screened by two researchers based on meeting inclusion criteria, with an adjudication round in the case of disagreement. We used RefWorks, an online citation management program, to track abstracts during this process. We identified over 480 abstracts which satisfied our criteria. Following abstract screening, we developed and tested a manuscript coding guide to capture the salient characteristics of each paper. We created an initial coding form by determining what paper topics would address our research questions and reviewing the literature to determine the most frequent response categories. We then piloted and tested the reliability of the form over three rounds of independent pair-coding, with each round resultingmore »
Developing a Program to Assist in Qualitative Data Analysis: How Engineering Students’ Discuss Model Types
This Research paper discusses the opportunities that utilizing a computer program can present in analyzing large amounts of qualitative data collected through a survey tool. When working with longitudinal qualitative data, there are many challenges that researchers face. The coding scheme may evolve over time requiring re-coding of early data. There may be long periods of time between data analysis. Typically, multiple researchers will participate in the coding, but this may introduce bias or inconsistencies. Ideally the same researchers would be analyzing the data, but often there is some turnover in the team, particularly when students assist with the coding. Computer programs can enable automated or semi-automated coding helping to reduce errors and inconsistencies in the coded data. In this study, a modeling survey was developed to assess student awareness of model types and administered in four first-year engineering courses across the three universities over the span of three years. The data collected from this survey consists of over 4,000 students’ open-ended responses to three questions about types of models in science, technology, engineering, and mathematics (STEM) fields. A coding scheme was developed to identify and categorize model types in student responses. Over two years, two undergraduate researchers analyzed a more »
- Award ID(s):
- 1827600
- Publication Date:
- NSF-PAR ID:
- 10392774
- Journal Name:
- 2022 ASEE Annual Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Engineers must understand how to build, apply, and adapt various types of models in order to be successful. Throughout undergraduate engineering education, modeling is fundamental for many core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching modeling, particularly in the first years of an engineering program. The research questions that drove this study are: (1) How do students’ solutions to a complex, open-ended problem (both written and coded solutions) develop over the course of multiple submissions? and (2) How do these developments compare across groups of students that did and did not participate in a course centered around modeling?. Students’ solutions to an open-ended problem across multiple sections of an introductory programming course were explored. These sections were all divided across two groups: (1) experimental group - these sections discussed and utilized mathematical and computational models explicitly throughout the course, and (2) comparison group - these sections focused on developing algorithms and writing code with a more traditional approach. All sections required students to complete a common open-ended problem that consisted of two versions of the problem (the first version with smaller data set and the other a larger data set). Each version hadmore »
-
Engineers must understand how to build, apply, and adapt various types of models in order to be successful. Throughout undergraduate engineering education, modeling is fundamental for many core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching modeling, particularly in the first years of an engineering program. The research questions that drove this study are: (1) How do students’ solutions to a complex, open-ended problem (both written and coded solutions) develop over the course of multiple submissions? and (2) How do these developments compare across groups of students that did and did not participate in a course centered around modeling?. Students’ solutions to an open-ended problem across multiple sections of an introductory programming course were explored. These sections were all divided across two groups: (1) experimental group - these sections discussed and utilized mathematical and computational models explicitly throughout the course, and (2) comparison group - these sections focused on developing algorithms and writing code with a more traditional approach. All sections required students to complete a common open-ended problem that consisted of two versions of the problem (the first version with smaller data set and the other a larger data set). Each version hadmore »
-
This Work-in-Progress paper investigates how students participating in a chemical engineering (ChE) Research Experience for Undergraduates (REU) program conceptualize and make plans for research projects. The National Science Foundation has invested substantial financial resources in REU programs, which allow undergraduate students the opportunity to work with faculty in their labs and to conduct hands-on experiments. Prior research has shown that REU programs have an impact on students’ perceptions of their research skills, often measured through the Undergraduate Research Student Self-Assessment (URSSA) survey. However, few evaluation and research studies have gone beyond perception data to include direct measures of students’ gains from program participation. This work-in-progress describes efforts to evaluate the impact of an REU on students’ conceptualization and planning of research studies using a pre-post semi-structured interview process. The construct being investigated for this study is planning, which has been espoused as a critical step in the self-regulated learning (SRL) process (Winne & Perry, 2000; Zimmerman, 2008). Students who effectively self-regulate demonstrate higher levels of achievement and comprehension (Dignath & Büttner, 2008), and (arguably) work efficiency. Planning is also a critical step in large projects, such as research (Dvir & Lechler, 2004). Those who effectively plan their projects make consistentmore »
-
The purpose of this study is to develop an instrument to measure student perceptions about the learning experiences in their online undergraduate engineering courses. Online education continues to grow broadly in higher education, but the movement toward acceptance and comprehensive utilization of online learning has generally been slower in engineering. Recently, however, there have been indicators that this could be changing. For example, ABET has accredited online undergraduate engineering degrees at Stony Brook University and Arizona State University (ASU), and an increasing number of other undergraduate engineering programs also offer online courses. During this period of transition in engineering education, further investigation about the online modality in the context of engineering education is needed, and survey instrumentation can support such investigations. The instrument presented in this paper is grounded in a Model for Online Course-level Persistence in Engineering (MOCPE), which was developed by our research team by combining two motivational frameworks used to study student persistence: the Expectancy x Value Theory of Achievement Motivation (EVT), and the ARCS model of motivational design. The initial MOCPE instrument contained 79 items related to students’ perceptions about the characteristics of their courses (i.e., the online learning management system, instructor practices, and peer support),more »