skip to main content


Title: The splashback boundary of haloes in hydrodynamic simulations
ABSTRACT The splashback radius, Rsp, is a physically motivated halo boundary that separates infalling and collapsed matter of haloes. We study Rsp in the hydrodynamic and dark matter-only IllustrisTNG simulations. The most commonly adopted signature of Rsp is the radius at which the radial density profiles are steepest. Therefore, we explicitly optimize our density profile fit to the profile slope and find that this leads to a $\sim 5{{\ \rm per\ cent}}$ larger radius compared to other optimizations. We calculate Rsp for haloes with masses between 1013 and 15 M⊙ as a function of halo mass, accretion rate, and redshift. Rsp decreases with mass and with redshift for haloes of similar M200 m in agreement with previous work. We also find that Rsp/R200 m decreases with halo accretion rate. We apply our analysis to dark matter, gas, and satellite galaxies associated with haloes to investigate the observational potential of Rsp. The radius of steepest slope in gas profiles is consistently smaller than the value calculated from dark matter profiles. The steepest slope in galaxy profiles, which are often used in observations, tends to agree with dark matter profiles but is lower for less massive haloes. We compare Rsp in hydrodynamic and N-body dark matter-only simulations and do not find a significant difference caused by the addition of baryonic physics. Thus, results from dark matter-only simulations should be applicable to realistic haloes.  more » « less
Award ID(s):
1814053 1814259
PAR ID:
10283672
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
504
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4649 to 4666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We explore the isothermal total density profiles of early-type galaxies (ETGs) in the IllustrisTNG simulation. For the selected 559 ETGs at z = 0 with stellar masses $10^{10.7}\, \mathrm{M}_{\odot } \leqslant M_{\ast } \leqslant 10^{11.9}\, \mathrm{M}_{\odot }$, the total power-law slope has a mean of 〈γ′〉 = 2.011 ± 0.007 and a scatter of $\sigma _{\gamma ^{\prime }} = 0.171$ over the radial range 0.4–4 times the stellar half-mass radius. Several correlations between γ′ and galactic properties including stellar mass, effective radius, stellar surface density, central velocity dispersion, central dark matter fraction, and in situ-formed stellar mass ratio are compared to observations and other simulations, revealing that IllustrisTNG reproduces many correlation trends, and in particular, γ′ is almost constant with redshift below z = 2. Through analysing IllustrisTNG model variations, we show that black hole kinetic winds are crucial to lowering γ′ and matching observed galaxy correlations. The effects of stellar winds on γ′ are subdominant compared to active galactic nucleus (AGN) feedback, and differ due to the presence of AGN feedback from previous works. The density profiles of the ETG dark matter haloes are well described by steeper than NFW profiles, and they are steeper in the full physics (FP) run than their counterparts in the dark matter-only (DMO) run. Their inner density slopes anticorrelate (remain constant) with the halo mass in the FP (DMO) run, and anticorrelate with the halo concentration parameter c200 in both the types of runs. The dark matter haloes of low-mass ETGs are contracted whereas high-mass ETGs are expanded, suggesting that variations in the total density profile occur through the different halo responses to baryons. 
    more » « less
  2. ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $0.5{{\ \rm per\ cent}}$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$) to the largest spirals ($M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $\gtrsim 100\ \rm pc$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation. 
    more » « less
  3. null (Ed.)
    ABSTRACT A self-similar spherical collapse model predicts a dark matter (DM) splashback and accretion shock in the outskirts of galaxy clusters while missing a key ingredient of structure formation – processes associated with mergers. To fill this gap, we perform simulations of merging self-similar clusters and investigate their DM and gas evolution in an idealized cosmological context. Our simulations show that the cluster rapidly contracts during the major merger and the splashback radius rsp decreases, approaching the virial radius rvir. While in the self-similar model rsp depends on a smooth mass accretion rate parameter Γs, our simulations show that in the presence of mergers, rsp responds to the changes in the total mass accretion rate Γvir, which accounts for both mergers and smooth accretion. The scatter of the Γvir − rsp/rvir relation indicates a generally low Γs ∼ 1 in clusters in cosmological simulations. In contrast to the DM, the hot gaseous atmospheres significantly expand by the merger-accelerated (MA-) shocks formed when the runaway merger shocks overtake the outer accretion shock. After a major merger, the MA-shock radius is larger than rsp by a factor of up to ∼1.7 for Γs ≲ 1 and is ∼rsp for Γs ≳ 3. This implies that (1) mergers could easily generate the MA-shock-splashback offset measured in cosmological simulations, and (2) the smooth mass accretion rate is small in regions away from filaments where MA-shocks reside. We further discuss the shapes of the DM haloes, various shocks, and contact discontinuities formed at different epochs of the merger, and the ram-pressure stripping in cluster outskirts. 
    more » « less
  4. ABSTRACT

    The fuzzy dark matter (FDM) scenario has received increased attention in recent years due to the small-scale challenges of the vanilla Lambda cold dark matter (ΛCDM) cosmological model and the lack of any experimental evidence for any candidate particle. In this study, we use cosmological N-body simulations to investigate high-redshift dark matter haloes and their responsiveness to an FDM-like power spectrum cutoff on small scales in the primordial density perturbations. We study halo density profiles, shapes, and alignments in FDM-like cosmologies (the latter two for the first time) by providing fits and quantifying departures from ΛCDM as a function of the particle mass m. Compared to ΛCDM, the concentrations of FDM-like haloes are lower, peaking at an m-dependent halo mass and thus breaking the approximate universality of density profiles in ΛCDM. The intermediate-to-major and minor-to-major shape parameter profiles are monotonically increasing with ellipsoidal radius in N-body simulations of ΛCDM. In FDM-like cosmologies, the monotonicity is broken, haloes are more elongated around the virial radius than their ΛCDM counterparts and less elongated closer to the centre. Finally, intrinsic alignment correlations, stemming from the deformation of initially spherically collapsing haloes in an ambient gravitational tidal field, become stronger with decreasing m. At z ∼ 4, we find a 6.4σ-significance in the fractional differences between the isotropized linear alignment magnitudes Diso in the m = 10−22 eV model and ΛCDM. Such FDM-like imprints on the internal properties of virialized haloes are expected to be strikingly visible in the high-z Universe.

     
    more » « less
  5. ABSTRACT We explore how the splashback radius (Rsp) of galaxy clusters, measured using the number density of the subhalo population, changes based on various selection criteria using the IllustrisTNG cosmological galaxy formation simulation. We identify Rsp by extracting the steepest radial gradient in a stacked set of clusters in 0.5 dex wide mass bins, with our clusters having halo masses 1013 ≤ M200,mean/M⊙ ≤ 1015. We apply cuts in subhalo mass, galaxy stellar mass, i-band absolute magnitude, and specific star formation rate. We find that, generally, galaxies of increasing mass and luminosity trace smaller measured splashback radii relative to the intrinsic dark matter radius. We also show that quenched galaxies may be used to reliably reconstruct the dark matter splashback radius. This trend is likely due to changes in the galaxy population. Additionally, we are able to reconcile different observational predictions that Rsp based upon galaxy number counts and dark matter may either align or show significant offset (e.g. those using optically or SZ-selected clusters) through the selection functions that these studies employ. Finally, we demonstrate that changes in Rsp measured through number counts are not due to a simple change in galaxy abundance inside and outside of the cluster. 
    more » « less