skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Organic Capsule as a Matrix to Capture and Store Reactive Molecules at Room Temperature in Aqueous Solution: 7‐ cis ‐β‐Ionone †
Low temperature matrix isolation method is the most popular one to generate and store reactive molecules and characterize them by in-situ IR spectroscopy. Recognizing the need for a simpler method to trap and store such molecules and characterize by NMR spectroscopy at room temperature in solution we have performed experiments exploring the value of water-soluble octa acid (OA) capsule as a storage vessel. The molecule we have chosen to illustrate the feasibility is the highly hindered 7-cis--ionone, which has been established to exist in equilibrium with its cyclic form with the later favored at room temperature. In this study we have shown that confined space can be an alternative to temperature to tilt an equilibrium towards higher energy isomer. During the course of the study, we were surprised to note that 7-trans--ionone aggregates in water and have distinct 1H NMR spectra. Ability to assemble characterizable organic aggregates in water reveals the value of water as a reaction medium that is yet to be fully explored by photochemists. Finally, we have clarified the likely mechanism of secondary photoreaction of -pyran to the final photoproduct that involves 1,5-hydrogen migration.  more » « less
Award ID(s):
1807729
PAR ID:
10283689
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Photochemistry and Photobiology
ISSN:
0031-8655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this work, we investigate the role of folding/unfolding equilibrium in protein aggregation and formation of a gel network. Near the neutral pH and at a low buffer ionic strength, the formation of the gel network around unfolding conditions prevents investigations of protein aggregation. In this study, by deploying the fact that in lysozyme solutions the time of folding/unfolding is much shorter than the characteristic time of gelation, we have prevented gelation by rapidly heating the solution up to the unfolding temperature (~80 °C) for a short time (~30 min.) followed by fast cooling to the room temperature. Dynamic light scattering measurements show that if the gelation is prevented, nanosized irreversible aggregates (about 10–15 nm radius) form over a time scale of 10 days. These small aggregates persist and aggregate further into larger aggregates over several weeks. If gelation is not prevented, the nanosized aggregates become the building blocks for the gel network and define its mesh length scale. These results support our previously published conclusion on the nature of mesoscopic aggregates commonly observed in solutions of lysozyme, namely that aggregates do not form from lysozyme monomers in their native folded state. Only with the emergence of a small fraction of unfolded proteins molecules will the aggregates start to appear and grow. 
    more » « less
  2. Water is an under-appreciated reaction medium that has been shown to facilitate photodimerization reactions. Despite having a low formal concentration, hydrophobic nature of organic compounds could lead to higher local concentrations, thereby favoring their cycloaddition. In contrast, photodimerization reactions are unlikely to occur in organic solvents under similar conditions. This study explores the supramolecular assembly of small organic molecules in water, focusing on their role in promoting photodimerization reactions. NMR spectroscopy, molecular dynamics simulations, and ab initio calculations were used to examine the dynamic interactions between indene and its aggregated state in water. Quantum mechanical calculations suggest that the stacking of indene with an antiparallel-displaced orientation is the most stable configuration, and MD simulations support the role of water in promoting aggregation. NMR results confirm the existence of indene aggregates, and 2D NMR reveals dynamic exchange between monomer and aggregate states. The study elucidates the complex dynamics of indene aggregation and its impact on photodimerization, providing insights into designing other photoreactions in water. 
    more » « less
  3. null (Ed.)
    The title complexes, (η 4 -cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 5 H 8 N 2 ) 2 (C 8 H 12 )]I, ( 1 ) and (η 4 -cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 7 H 12 N 2 ) 2 (C 8 H 12 )]I, ( 2 ), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid L-proline to [Ir(COD)(IMe) 2 ]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C 2/ m , while 2 crystallizes in the orthorhombic space group Pccn , both with Z = 4. 
    more » « less
  4. Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd 3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA–spacer–Gd-PyMTA, with Gd–Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central |−1/2〉 → |1/2〉 transition occurs at 30 K for Gd–Gd distances up to ∼3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to ∼2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method is further extendable up to room temperature by immobilizing the sample in glassy trehalose. We show that the peak-to-peak broadening of the central transition follows the expected 1/ r 3 dependence for the electron–electron dipolar interaction, from cryogenic temperatures up to room temperature. A simple procedure for simulating the dependence of the lineshape on interspin distance is presented, in which the broadening of the central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened through electron–electron dipolar interactions with a neighboring S = 7/2 spin. 
    more » « less
  5. Resolving small molecule mixtures by nuclear magnetic resonance (NMR) spectroscopy has been of great interest for a long time for its precision, reproducibility, and efficiency. However, spectral analyses for such mixtures are often highly challenging due to overlapping resonance lines and limited chemical shift windows. The existing experimental and theoretical methods to produce shift NMR spectra in dealing with the problem have limited applicability owing to sensitivity issues, inconsistency, and/or the requirement of prior knowledge. Recently, we resolved the problem by decoupling multiplet structures in NMR spectra by the wavelet packet transform (WPT) technique. In this work, we developed a scheme for deploying the method in generating highly resolved WPT NMR spectra and predicting the composition of the corresponding molecular mixtures from their 1H NMR spectra in an automated fashion. The four-step spectral analysis scheme consists of calculating the WPT spectrum, peak matching with a WPT shift NMR library, followed by two optimization steps in producing the predicted molecular composition of a mixture. The robustness of the method was tested on an augmented dataset of 1000 molecular mixtures, each containing 3 to 7 molecules. The method successfully predicted the constituent molecules with a median true positive rate of 1.0 against the varying compositions, while a median false positive rate of 0.04 was obtained. The approach can be scaled easily for much larger datasets. 
    more » « less