Cationic glycylalanylglycine (GAG) self-assembles into a gel in a 55 mol% ethanol/45 mol% water mixture. The gel exhibits a network of crystalline fibrils grown to lengths on a 10 −4 –10 −5 m scale (Farrel et al. , Soft Matter , 2016, 12 , 6096–6110). Rheological data are indicative of a rather strong gel with storage moduli in the 10 kPa regime. Spectroscopic data revealed the existence of two gel phases; one forms below T = 15 °C (phase I) while the other one forms in a temperature range between 15 °C and the melting temperature of ca. 35 °C (phase II). We explored the reformation of the cationic GAG gel in 55 mol% ethanol/45 mol% water after thermal annealing by spectroscopic and rheological means. Our data reveal that even a short residence time of 5 minutes in the sol phase at 50 °C produced a delay of the gelation process and a gel of lesser strength. These observations suggest that the residence time at the annealing temperature can be used to adjust the strength of both gel phases. Our spectroscopic data show that the annealing process does not change the chirality of peptide fibrils in the two gel phases and that the initial aggregation state of the reformation process is by far more ordered for phase I than it is for phase II. In the gel phases of GAG/ethanol/water mixtures, ethanol seems to function as a sort of catalyst that enables the self-assembly of the peptide in spite of its low intrinsic propensity for aggregation.
more »
« less
Effects of Protein Unfolding on Aggregation and Gelation in Lysozyme Solutions
In this work, we investigate the role of folding/unfolding equilibrium in protein aggregation and formation of a gel network. Near the neutral pH and at a low buffer ionic strength, the formation of the gel network around unfolding conditions prevents investigations of protein aggregation. In this study, by deploying the fact that in lysozyme solutions the time of folding/unfolding is much shorter than the characteristic time of gelation, we have prevented gelation by rapidly heating the solution up to the unfolding temperature (~80 °C) for a short time (~30 min.) followed by fast cooling to the room temperature. Dynamic light scattering measurements show that if the gelation is prevented, nanosized irreversible aggregates (about 10–15 nm radius) form over a time scale of 10 days. These small aggregates persist and aggregate further into larger aggregates over several weeks. If gelation is not prevented, the nanosized aggregates become the building blocks for the gel network and define its mesh length scale. These results support our previously published conclusion on the nature of mesoscopic aggregates commonly observed in solutions of lysozyme, namely that aggregates do not form from lysozyme monomers in their native folded state. Only with the emergence of a small fraction of unfolded proteins molecules will the aggregates start to appear and grow.
more »
« less
- Award ID(s):
- 1856479
- PAR ID:
- 10276366
- Date Published:
- Journal Name:
- Biomolecules
- Volume:
- 10
- Issue:
- 9
- ISSN:
- 2218-273X
- Page Range / eLocation ID:
- 1262
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Single particle tracking (SPT) of PEG grafted nanoparticles (NPs) was used to examine the gelation of tetra poly(ethylene glycol) (TPEG) succinimidyl glutarate (TPEG-SG) and amine (TPEG-A) terminated 4-armed stars. As concentration was decreased from 40 to 20 mg mL −1 , the onset of network formation, t gel , determined from rheometry increased from less than 2 to 44 minutes. NP mobility increased as polymer concentration decreased in the sol state, but remained diffusive at times past the t gel determined from rheometry. Once in the gel state, NP mobility decreased, became sub-diffusive, and eventually localized in all concentrations. The NP displacement distributions were investigated to gain insight into the nanoscale environment. In these relatively homogeneous gels, the onset of sub-diffusivity was marked by a rapid increase in dynamic heterogeneity followed by a decrease consistent with a homogeneous network. We propose a gelation mechanism in which clusters initially form a heterogeneous structure which fills in to form a fully gelled relatively homogenous network. This work aims to examine the kinetics of TPEG gelation and the homogeneity of these novel gels on the nanometer scale, which will aid in the implementation of these gels in biomedical or filtration applications.more » « less
-
When polyelectrolytes and oppositely-charged multivalent ions are mixed in aqueous solutions, they can self-assemble into an array of soft materials and complex fluids, ranging from micro- and nanoparticles, to coacervates, to macroscopic gels. Here, we describe the formation and useful/interesting properties of two such materials: (1) submicron particles formed via ionotropic gelation of the cationic polysaccharide chitosan with tripolyphosphate (TPP); and (2) coacervates prepared from mixtures of the synthetic polycation poly(allylamine hydrochloride) (PAH) with either TPP or pyrophosphate (PPi). For chitosan/TPP particles (which are widely explored as potential drug carriers) we show how, by inhibiting chitosan/TPP binding, monovalent salt (NaCl) can be used to: (1) drastically slow down the rapid ionotropic gelation process to facilitate the experimental analysis of how these particles form; (2) enhance the stability of these particles to aggregation; and (3) achieve improved control over particle size. Unlike the gel-like chitosan/TPP ionic networks, which are both soft (with 10^3 - 10^4 Pa storage moduli) and water-rich, mixtures of PAH with TPP and PPi form high-modulus, putty-like coacervates with storage moduli above 10^5 Pa and much lower (26 - 40 wt%) water contents. These moduli and water contents evidently reflect the high ionic crosslink densities enabled by the densely-charged and flexible PAH chains, and strong PAH/PPi and PAH/TPP binding (which also imparts these coacervates with long relaxation times). Besides their bulk properties, we show that the coacervates adhere to diverse substrates (both hydrophilic and hydrophobic) and, when used as wet adhesives, deliver short-term tensile adhesion strengths above 10^5 Pa. Further, the dense crosslinking within PAH/PPi and PAH/TPP coacervates makes them strong barriers to solute diffusion and (regardless of the solute-coacervate binding strength) enables them to release small water-soluble molecules over multiple months. These findings suggest that PAH/PPi and PAH/TPP coacervates can provide a simple route to both underwater adhesion and long-term controlled release.more » « less
-
Despite hundreds of studies involving slide-ring gels derived from cyclodextrin (CD)-based polyrotaxanes (PRs), their covalent cross-linking kinetics are not well characterized. We employ chemorheology as a tool to measure the gelation kinetics of a model slide-ring organogel derived from α -cyclodextrin/poly (ethylene glycol) PRs cross-linked with hexamethylenediisocyanate (HMDI) in DMSO. The viscoelastic properties of the gels were monitored in situ by small-amplitude oscillatory shear (SAOS) rheology, enabling us to estimate the activation barrier and rate law for cross-linking while mapping experimental parameters to kinetics and mechanical properties. Gelation time, gel point, and final gel elasticity depend on cross-linker concentration, but polyrotaxane concentration only affects gelation time and elasticity (not gel point), while temperature only affects gelation time and gel point (not final elasticity). These measurements facilitate the rational design of slide-ring networks by simple parameter selection (temperature, cross-linker concentration, PR concentration, reaction time).more » « less
-
Abstract Many proteins must interact with molecular chaperones to achieve their native state in the cell. Yet, how chaperone binding‐site characteristics affect the folding process is poorly understood. The ubiquitous Hsp70 chaperone system prevents client‐protein aggregation by holding unfolded conformations and by unfolding misfolded states. Hsp70 binding sites of client proteins comprise a nonpolar core surrounded by positively charged residues. However, a detailed analysis of Hsp70 binding sites on a proteome‐wide scale is still lacking. Further, it is not known whether proteins undergo some degree of folding while chaperone bound. Here, we begin to address the above questions by identifying Hsp70 binding sites in 2258Escherichia coli(E. coli) proteins. We find that most proteins bear at least one Hsp70 binding site and that the number of Hsp70 binding sites is directly proportional to protein size. Aggregation propensity upon release from the ribosome correlates with number of Hsp70 binding sites only in the case of large proteins. Interestingly, Hsp70 binding sites are more solvent‐exposed than other nonpolar sites, in protein native states. Our findings show that the majority ofE. coliproteins are systematically enabled to interact with Hsp70 even if this interaction only takes place during a fraction of the protein lifetime. In addition, our data suggest that some conformational sampling may take place within Hsp70‐bound states, due to the solvent exposure of some chaperone binding sites in native proteins. In all, we propose that Hsp70‐chaperone‐binding traits have evolved to favor Hsp70‐assisted protein folding devoid of aggregation.more » « less
An official website of the United States government

