skip to main content


Title: Parity-Violating Møller Scattering at Next-to-Next-to-Leading Order: Closed Fermion Loops
Award ID(s):
1820760
NSF-PAR ID:
10283692
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Review Letters
Volume:
126
Issue:
13
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications. 
    more » « less
  2. Modern hydrologic models have extraordinary capabilities for representing complex process in surface-subsurface systems. These capabilities have revolutionized the way we conceptualize flow systems, but how to represent uncertainty in simulated flow systems is not as well developed. Currently, characterizing model uncertainty can be computationally expensive, in part, because the techniques are appended to the numerical methods rather than seamlessly integrated. The next generation of computers, however, presents opportunities to reformulate the modeling problem so that the uncertainty components are handled more directly within the flow system simulation. Misconceptions about quantum computing abound and they will not be a “silver bullet” for solving all complex problems, but they might be leveraged for certain kinds of highly uncertain problems, such as groundwater (GW). The point of this issue paper is that the GW community could try to revise the foundations of our models so that the governing equations being solved are tailored specifically for quantum computers. The goal moving forward should not just be to accelerate the models we have, but also to address their deficiencies. Embedding uncertainty into the models by evolving distribution functions will make predictive GW modeling more complicated, but doing so places the problem into a complexity class that is highly efficient on quantum computing hardware. Next generation GW models could put uncertainty into the problem at the very beginning of a simulation and leave it there throughout, providing a completely new way of simulating subsurface flows. 
    more » « less