ABSTRACT Previous studies of fueling black holes in galactic nuclei have argued (on scales $${\sim}0.01{-}1000\,$$pc) accretion is dynamical with inflow rates $$\dot{M}\sim \eta \, M_{\rm gas}/t_{\rm dyn}$$ in terms of gas mass Mgas, dynamical time tdyn, and some η. But these models generally neglected expulsion of gas by stellar feedback, or considered extremely high densities where expulsion is inefficient. Studies of star formation, however, have shown on sub-kpc scales the expulsion efficiency fwind = Mejected/Mtotal scales with the gravitational acceleration as $$(1-f_{\rm wind})/f_{\rm wind}\sim \bar{a}_{\rm grav}/\langle \dot{p}/m_{\ast }\rangle \sim \Sigma _{\rm eff}/\Sigma _{\rm crit}$$ where $$\bar{a}_{\rm grav}\equiv G\, M_{\rm tot}(\lt r)/r^{2}$$ and $$\langle \dot{p}/m_{\ast }\rangle$$ is the momentum injection rate from young stars. Adopting this as the simplest correction for stellar feedback, $$\eta \rightarrow \eta \, (1-f_{\rm wind})$$, we show this provides a more accurate description of simulations with stellar feedback at low densities. This has immediate consequences, predicting the slope and normalization of the MBH − σ and MBH − Mbulge relation, LAGN −SFR relations, and explanations for outliers in compact Es. Most strikingly, because star formation simulations show expulsion is efficient (fwind ∼ 1) below total-mass surface density $$M_{\rm tot}/\pi \, r^{2}\lt \Sigma _{\rm crit}\sim 3\times 10^{9}\, \mathrm{M}_{\odot }\, {\rm kpc^{-2}}$$ (where $$\Sigma _{\rm crit}=\langle \dot{p}/m_{\ast }\rangle /(\pi \, G)$$), BH mass is predicted to specifically trace host galaxy properties above a critical surface brightness Σcrit (B-band $$\mu _{\rm B}^{\rm crit}\sim 19\, {\rm mag\, arcsec^{-2}}$$). This naturally explains why BH masses preferentially reflect bulge properties or central surface densities (e.g. $$\Sigma _{1\, {\rm kpc}}$$), not ‘total’ galaxy properties.
more »
« less
Simulations of the Milky Way’s central molecular zone – I. Gas dynamics
ABSTRACT We use hydrodynamical simulations to study the Milky Way’s central molecular zone (CMZ). The simulations include a non-equilibrium chemical network, the gas self-gravity, star formation, and supernova feedback. We resolve the structure of the interstellar medium at sub-parsec resolution while also capturing the interaction between the CMZ and the bar-driven large-scale flow out to $$R\sim 5\, {\rm kpc}$$. Our main findings are as follows: (1) The distinction between inner (R ≲ 120 pc) and outer (120 ≲ R ≲ 450 pc) CMZ that is sometimes proposed in the literature is unnecessary. Instead, the CMZ is best described as single structure, namely a star-forming ring with outer radius R ≃ 200 pc which includes the 1.3° complex and which is directly interacting with the dust lanes that mediate the bar-driven inflow. (2) This accretion can induce a significant tilt of the CMZ out of the plane. A tilted CMZ might provide an alternative explanation to the ∞-shaped structure identified in Herschel data by Molinari et al. (3) The bar in our simulation efficiently drives an inflow from the Galactic disc (R ≃ 3 kpc) down to the CMZ (R ≃ 200 pc) of the order of $$1\rm \, M_\odot \, yr^{-1}$$, consistent with observational determinations. (4) Supernova feedback can drive an inflow from the CMZ inwards towards the circumnuclear disc of the order of $${\sim}0.03\, \rm M_\odot \, yr^{-1}$$. (5) We give a new interpretation for the 3D placement of the 20 and 50 km s−1 clouds, according to which they are close (R ≲ 30 pc) to the Galactic Centre, but are also connected to the larger scale streams at R ≳ 100 pc.
more »
« less
- Award ID(s):
- 1816715
- PAR ID:
- 10283766
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 499
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4455 to 4478
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $$\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $$\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time.more » « less
-
ABSTRACT Fuelling star formation in large, discy galaxies requires a continuous supply of gas accreting into star-forming regions. Previously, we characterized this accretion in four Milky Way mass galaxies ($$M_{\rm halo}\sim 10^{12}{\rm M}_{\odot }$$) in the FIRE-2 cosmological zoom-in simulations. At $$z\sim 0$$, we found that gas within the inner circumgalactic medium (iCGM) approaches the disc with comparable angular momentum (AM) to the disc edge, joining in the outer half of the gaseous disc. Within the disc, gas moves inwards at velocities of $$\sim$$1–5 km s$$^{-1}$$ while fully rotationally supported. In this study, we analyse the torques that drive these flows. In all cases studied, we find that the torques in discs enable gas accreted near the disc edge to transport inwards and fuel star formation in the central few kpc. The primary sources of torque come from gravity, hydrodynamical forces, and the sub-grid $$P \mathrm{ d}V$$ work done by supernova (SN) remnants interacting with gas on $$\lesssim$$10 pc scales. These SNe remnant interactions induce negative torques within the inner disc and positive torques in the outer disc. The gas–gas gravitational, hydro, and ‘feedback’ torques transfer AM outwards to where accreting gas joins the disc, playing an important role in driving inflows and regulating disc structure. Gravitational torques from stars and dark matter provide an AM sink within the innermost regions of the disc and iCGM, respectively. Feedback torques are dominant within the disc, while gravitational and hydrodynamical torques have similar significance depending on the system/region. Torques from viscous shearing, magnetic forces, stellar winds, and radiative transfer are less significant.more » « less
-
ABSTRACT Stellar feedback plays a crucial role in regulating baryon cycles of a galactic ecosystem, and may manifest itself in the formation of superbubbles in the interstellar medium. In this work, we used a set of high-resolution simulations to systematically study the properties and evolution of superbubbles in galactic environments. The simulations were based on the SMUGGLE galaxy formation framework using the hydrodynamical moving-mesh code arepo, reaching a spatial resolution of $$\sim 4 \, \rm pc$$ and mass resolution of $$\sim 10^3 \, \rm M_{\odot }$$. We identified superbubbles and tracked their time evolution using the parent stellar associations within the bubbles. The X-ray luminosity-size distribution of superbubbles in the fiducial run is largely consistent with the observations of nearby galaxies. The size of superbubbles shows a double-peaked distribution, with the peaks attributed to early feedback (radiative and stellar wind feedback) and supernova feedback. The early feedback tends to suppress the subsequent supernova feedback, and it is strongly influenced by star formation efficiency, which regulates the environmental density. Our results show that the volume filling factor of hot gas (T > 105.5 K) is about $$12~{{\ \rm per\ cent}}$$ averaged over a region of 4 kpc in height and 20 kpc in radius centred on the disc of the galaxy. Overall, the properties of superbubbles are sensitive to the choice of subgrid galaxy formation models and can, therefore, be used to constrain these models.more » « less
-
ABSTRACT We investigate the formation of dense stellar clumps in a suite of high-resolution cosmological zoom-in simulations of a massive, star-forming galaxy at z ∼ 2 under the presence of strong quasar winds. Our simulations include multiphase ISM physics from the Feedback In Realistic Environments (FIRE) project and a novel implementation of hyper-refined accretion disc winds. We show that powerful quasar winds can have a global negative impact on galaxy growth while in the strongest cases triggering the formation of an off-centre clump with stellar mass $${\rm M}_{\star }\sim 10^{7}\, {\rm M}_{\odot }$$, effective radius $${\rm R}_{\rm 1/2\, \rm Clump}\sim 20\, {\rm pc}$$, and surface density $$\Sigma _{\star } \sim 10^{4}\, {\rm M}_{\odot }\, {\rm pc}^{-2}$$. The clump progenitor gas cloud is originally not star-forming, but strong ram pressure gradients driven by the quasar winds (orders of magnitude stronger than experienced in the absence of winds) lead to rapid compression and subsequent conversion of gas into stars at densities much higher than the average density of star-forming gas. The AGN-triggered star-forming clump reaches $${\rm SFR} \sim 50\, {\rm M}_{\odot }\, {\rm yr}^{-1}$$ and $$\Sigma _{\rm SFR} \sim 10^{4}\, {\rm M}_{\odot }\, {\rm yr}^{-1}\, {\rm kpc}^{-2}$$, converting most of the progenitor gas cloud into stars in ∼2 Myr, significantly faster than its initial free-fall time and with stellar feedback unable to stop star formation. In contrast, the same gas cloud in the absence of quasar winds forms stars over a much longer period of time (∼35 Myr), at lower densities, and losing spatial coherency. The presence of young, ultra-dense, gravitationally bound stellar clumps in recently quenched galaxies could thus indicate local positive feedback acting alongside the strong negative impact of powerful quasar winds, providing a plausible formation scenario for globular clusters.more » « less
An official website of the United States government

