skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advancing Undergraduate Laboratory Education Using Non-Model Insect Species
Over the past decade, laboratory courses have made a fundamental shift to inquiry-based modules and authentic research experiences. In many cases, these research experiences emphasize addressing novel research questions. Insects are ideal for inquiry-based undergraduate laboratory courses because research on insects is not limited by regulatory, economic, and logistical constraints to the same degree as research on vertebrates. While novel research questions could be pursued with model insect species (e.g., Drosophila, Tribolium), the opportunities presented by non-model insects are much greater, as less is known about non-model species. We review the literature on the use of non-model insect species in laboratory education to provide a resource for faculty interested in developing new authentic inquiry-based laboratory modules using insects. Broader use of insects in undergraduate laboratory education will support the pedagogical goals of increased inquiry and resesarch experiences while at the same time fostering increased interest and research in entomology.  more » « less
Award ID(s):
1821533 1821184
PAR ID:
10283775
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Entomology
Volume:
66
Issue:
1
ISSN:
0066-4170
Page Range / eLocation ID:
485 to 504
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teaching students how to think like scientists is a critical but challenging goal in biochemistry education. The Biochemistry Authentic Scientific Inquiry Lab (BASIL) initiative was conceived by Dr Paul Craig from the Rochester Institute of Technology and is led by colleagues across multiple institutions. They have developed an innovative curriculum that transforms traditional cookbook-style laboratory courses into authentic research experiences, also known as a Course-based Undergraduate Research Experience (CURE). By investigating real proteins with unknown functions, students learn essential scientific skills while expanding our knowledge of protein biochemistry. 
    more » « less
  2. Campus shutdowns during the SARS-CoV2 pandemic posed unique challenges to faculty and students engaged in laboratory courses. Formerly hands-on experiments had to be quickly pivoted to emergency remote learning. While some resources existed prior to this period, many currently available online modules and/or simulations focus on a single technique. The Biochemistry Authentic Scientific Inquiry Lab (BASIL) curriculum has, for several years, provided a robust, linked, holistic inquiry experience that allows students to make connections between multiple techniques, both computational in nature as well as wet-lab based. As a Course-based Undergraduate Research Experience (CURE), this flexible, module-based curriculum allows students to generate original hypotheses based on analysis of proteins of unknown function. We have taught this curriculum as the upper-level laboratory course on our campuses and were obliged to transition to remote instruction at various points in the course sequence. We report on the experiences of faculty and students over the transition period in this course. Additionally, we report as a case study results of one of our campus’ ongoing discipline-based education research (DBER) on the BASIL curriculum prior to and during remote delivery. 
    more » « less
  3. Undergraduate science students who volunteer within a research laboratory group, or participate in funded research opportunities, in general are those who have the opportunity to engage in authentic research. In this article, we report the findings from two different iterations of a semester-long collaboration between a biology faculty member and a science education faculty member at a major research institution in the Southeastern United States. Specifically, the faculty members designed an ecology laboratory course for upper-level undergraduate students (primarily biology majors) where they would engage in an original and highly authentic ecological research project. The goal of this course was to have students explicitly learn about the nature of science (NOS), and authentic scientific practices such as inquiry and experimentation in the context of their own research. In the second year of the course, the global COVID-19 pandemic forced us to modify our approach to accomplish the same goals, but now in a remote and online format. Using questionnaires, concept inventories, and semi-structured interviews, the impact of the course on students’ understandings of NOS, inquiry, and experimentation, in addition to their perspectives on the experience within the course compared to prior laboratory coursework, was investigated. We found that students showed modest gains in each of the aforementioned desirable outcomes. These gains were generally comparable in both face-to-face and remote course settings. Additionally, students shared with us their preference for authentic laboratory work as compared with the typical laboratory work with its given research question and step-by-step instructions. Our research demonstrates what is possible in both face-to-face and remote undergraduate laboratory courses in biology and the positive impact that was observed in our students. We hope it serves as a model for other scientists and science educators as they collaborate to design authentic research-based coursework for undergraduate biology students. 
    more » « less
  4. Despite being at the center of undergraduate engineering education, laboratory experiments have remained unchanged for decades, resulting in assignments lacking in opportunities for students to learn and grow. We used a survey to measure students’ sense of agency in prototypical design and laboratory courses at research universities. We found students in laboratory courses at both levels experienced significantly lower framing agency than their peers in senior design, and that even those engaged in authentic course-based research did not perceive the experiments as more agentive or authentic. We infer students drew upon abundant low-agency experiences in laboratory experiments; maximizing learning in laboratory courses may hinge on clearer communication about authentic experiments or systematic redesign of earlier courses 
    more » « less
  5. In contrast to the dynamic treatment of other aspects of the curriculum, and despite being at the center of chemical engineering education, laboratory experiments have remained largely unchanged for decades. To characterize the potential impact changes to laboratory courses could have, we explored student perceptions across a department and characterized the kinds of opportunities students have to use their agency in these courses across universities. We used a survey to measure students’ sense of agency across several laboratory courses in a chemical engineering department. We found students in laboratory courses across the chemical engineering laboratory sequence, including those engaged in authentic course-based research did not perceive the experiments as agentive or authentic. We infer students draw upon abundant low-agency experiences in laboratory experiments. We report on the agency that instructors report students possessing across two chemical engineering departments to understand variation across institutions. Maximizing learning in laboratory courses may hinge on clearer communication about authentic experiments or systematic redesign of earlier courses. 
    more » « less