Abstract The forecast potential of springtime ozone on April surface temperatures at particular locations in the Northern Hemisphere has been previously reported. Evidence suggests that early springtime Arctic stratospheric ozone acts as a proxy for extreme events in the winter polar vortex. Here, using a state‐of‐the‐art chemistry‐climate model, reanalysis and observations, we extend the forecast potential of ozone on surface temperatures to aspects of the Northern Hemisphere cryosphere. Sea ice fraction and sea ice extent differences between years of March high and low Arctic stratospheric ozone extremes show excellent agreement between an ensemble of chemistry‐climate model simulations and observations, with differences occurring not just in April but extending through to the following winter season in some locations. Large snow depth differences are also obtained in regional locations in Russia and along the southeast coast of Alaska. These differences remain elevated until early summer, when snow cover diminishes. Using a conditional empirical model in a leave‐three‐out cross validation method, March total column ozone is able to accurately predict the sign of the observed sea ice extent and snow depth anomalies over 70% of the time during an ozone extreme year, especially in the region of the Bering strait and the Greenland Sea, which could be useful for shipping routes and for testing climate models.
more »
« less
Comment on “Virtues and limitations of Pittsburgh green for ozone detection” by C. C. Beltrán, E. A. Palmer, B. R. Buckley and F. Iza, Chem. Commun., 2015, 51 , 1579
We previously developed Pittsburgh Green homoallyl ether to quantify trace ozone. Independently, problems were reported when the method was used for excess ozone. Here, we discuss the origin of the reported problems and demonstrate that when this method is used according to our previous report, no problems occur.
more »
« less
- Award ID(s):
- 1506942
- PAR ID:
- 10283983
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 52
- Issue:
- 19
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 3847 to 3849
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A facile method to oxidatively trimerize phenols using a catalytic aerobic copper system is described. The mechanism of this transformation was probed, yielding insight that enabled cross‐coupling trimerizations. With this method, the natural product pyrolaside B was synthesized for the first time. The key strategy used for this novel synthesis is the facile one‐step construction of a spiroketal trimer intermediate, which can be selectively reduced to give the natural product framework without recourse to stepwise Ullmann‐ and Suzuki‐type couplings. As a result, pyrolaside B can be obtained expeditiously in five steps and 16 % overall yield. Three other analogues were synthesized, thus highlighting the utility of the method, which provides new accessibility to this area of chemical space. A novel xanthene was also synthesized through controlled Lewis acid promoted rearrangement of a spiroketal trimer.more » « less
-
China has been experiencing severe ozone pollution problems in recent years. While a number of studies have focused on the ozone-pollution-prone regions such as the North China Plain, Yangtze River Delta, and Pearl River Delta regions, few studies have investigated the mechanisms modulating the interannual variability of ozone concentrations in Shandong Province, where a large population is located and is often subject to ozone pollution. By utilizing both the reanalysis dataset and regional numerical model (WRF-CMAQ), we delve into the potential governing mechanisms of ozone pollution in Shandong Province—especially over the major port city of Qingdao—during summer 2014–2019. During this period, ozone pollution in Qingdao exceeded the tier II standard of the Chinese National Ambient Air Quality (GB 3095-2012) for 75 days. From the perspective of meteorology, the high-pressure ridge over Baikal Lake and to its northeast, which leads to a relatively low humidity and sufficient sunlight, is the most critical weather system inducing high-ozone events in Qingdao. In terms of emissions, biogenic emissions contribute to ozone enhancement close to 10 ppb in the west and north of Shandong Province. Numerical experiments show that the local impact of biogenic emissions on ozone production in Shandong Province is relatively small, whereas biogenic emissions on the southern flank of Shandong Province enhance ozone production and further transport northeastward, resulting in an increase in ozone concentrations over Shandong Province. For the port city of Qingdao, ship emissions increase ozone concentrations when sea breezes (easterlies) prevail over Qingdao, with the 95th percentile reaching 8.7 ppb. The findings in this study have important implications for future ozone pollution in Shandong Province, as well as the northern and coastal areas in China.more » « less
-
The lower 12·875 km of the Passaic River is heavily contaminated due to industrial activities – specifically heavy metal extraction from chromium-ore-processing plants and production of pesticides and herbicides. Conventional methods for remediating contaminated sediments have limited application due to the tidal action and urban area of the contaminated section of the Passaic River. Hence, this study proposes an in situ technology using ultrasound and ozone nanobubbles to remediate the sediments. Ultrasound is capable of desorbing heavy metals from soil, and ozone can oxidise the released heavy metals to a form that is mobile for ease of extraction. Nanobubbles are used as an effective ozone delivery method for the oxidation of heavy metals. Bench-scale tests were performed to evaluate the feasibility of the proposed technology. Ozone nanobubbles increased the solubility of ozone in water and reduced wastage. Also, due to the high ozone concentrations in water, chromium oxidation increased. A synthetic soil with a grain size distribution similar to that of actual river sediments was artificially contaminated with chromium and used in this research. Test results showed a 97·54% chromium removal efficiency, suggesting the feasibility of the proposed technology for pilot-scale studies.more » « less
-
The catalytic depletion of Antarctic stratospheric ozone is linked to anthropogenic emissions of chlorine and bromine. Despite its larger ozone-depleting efficiency, the contribution of ocean-emitted iodine to ozone hole chemistry has not been evaluated, due to the negligible iodine levels previously reported to reach the stratosphere. Based on the recently observed range (0.77 ± 0.1 parts per trillion by volume [pptv]) of stratospheric iodine injection, we use the Whole Atmosphere Community Climate Model to assess the role of iodine in the formation and recent past evolution of the Antarctic ozone hole. Our 1980–2015 simulations indicate that iodine can significantly impact the lower part of the Antarctic ozone hole, contributing, on average, 10% of the lower stratospheric ozone loss during spring (up to 4.2% of the total stratospheric column). We find that the inclusion of iodine advances the beginning and delays the closure stages of the ozone hole by 3 d to 5 d, increasing its area and mass deficit by 11% and 20%, respectively. Despite being present in much smaller amounts, and due to faster gas-phase photochemical reactivation, iodine can dominate (∼73%) the halogen-mediated lower stratospheric ozone loss during summer and early fall, when the heterogeneous reactivation of inorganic chlorine and bromine reservoirs is reduced. The stratospheric ozone destruction caused by 0.77 pptv of iodine over Antarctica is equivalent to that of 3.1 (4.6) pptv of biogenic very short-lived bromocarbons during spring (rest of sunlit period). The relative contribution of iodine to future stratospheric ozone loss is likely to increase as anthropogenic chlorine and bromine emissions decline following the Montreal Protocol.more » « less
An official website of the United States government

