skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Impact of Meteorology and Emissions on Surface Ozone in Shandong Province, China, during Summer 2014–2019
China has been experiencing severe ozone pollution problems in recent years. While a number of studies have focused on the ozone-pollution-prone regions such as the North China Plain, Yangtze River Delta, and Pearl River Delta regions, few studies have investigated the mechanisms modulating the interannual variability of ozone concentrations in Shandong Province, where a large population is located and is often subject to ozone pollution. By utilizing both the reanalysis dataset and regional numerical model (WRF-CMAQ), we delve into the potential governing mechanisms of ozone pollution in Shandong Province—especially over the major port city of Qingdao—during summer 2014–2019. During this period, ozone pollution in Qingdao exceeded the tier II standard of the Chinese National Ambient Air Quality (GB 3095-2012) for 75 days. From the perspective of meteorology, the high-pressure ridge over Baikal Lake and to its northeast, which leads to a relatively low humidity and sufficient sunlight, is the most critical weather system inducing high-ozone events in Qingdao. In terms of emissions, biogenic emissions contribute to ozone enhancement close to 10 ppb in the west and north of Shandong Province. Numerical experiments show that the local impact of biogenic emissions on ozone production in Shandong Province is relatively small, whereas biogenic emissions on the southern flank of Shandong Province enhance ozone production and further transport northeastward, resulting in an increase in ozone concentrations over Shandong Province. For the port city of Qingdao, ship emissions increase ozone concentrations when sea breezes (easterlies) prevail over Qingdao, with the 95th percentile reaching 8.7 ppb. The findings in this study have important implications for future ozone pollution in Shandong Province, as well as the northern and coastal areas in China.  more » « less
Award ID(s):
1743401
PAR ID:
10390641
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Environmental Research and Public Health
Volume:
19
Issue:
11
ISSN:
1660-4601
Page Range / eLocation ID:
6758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. In the summer of 2017, heavy ozone pollution swamped most of the North ChinaPlain (NCP), with the maximum regional average of daily maximum 8 h ozoneconcentration (MDA8) reaching almost 120 ppbv. In light of the continuingreduction of anthropogenic emissions in China, the underlying mechanisms forthe occurrences of these regional extreme ozone episodes are elucidated fromtwo perspectives: meteorology and biogenic emissions. The significantpositive correlation between MDA8 ozone and temperature, which is amplifiedduring heat waves concomitant with stagnant air and no precipitation,supports the crucial role of meteorology in driving high ozoneconcentrations. We also find that biogenic emissions are enhanced due tofactors previously not considered. During the heavy ozone pollution episodesin June 2017, biogenic emissions driven by high vapor pressure deficit(VPD), land cover change and urban landscape yield an extra mean MDA8 ozoneof 3.08, 2.79 and 4.74 ppbv, respectively, over the NCP, which togethercontribute as much to MDA8 ozone as biogenic emissions simulated using theland cover of 2003 and ignoring VPD and urban landscape. In Beijing, thebiogenic emission increase due to urban landscape has a comparable effect onMDA8 ozone to the combined effect of high VPD and land cover change between2003 and 2016. In light of the large effect of urban landscape on biogenicemission and the subsequent ozone formation, the types of trees may becautiously selected to take into account of the biogenic volatile organic compound (BVOC) emission during the afforestation of cities. This study highlights the vital contributions ofheat waves, land cover change and urbanization to the occurrence of extremeozone episodes, with significant implications for ozone pollution control ina future when heat wave frequency and intensity are projected to increaseunder global warming. 
    more » « less
  2. Abstract An extensive set of primary and secondary pollutants was measured at a ground site in a remote location in the Yellow River Delta, China during the Ozone Photochemistry and Export from China Experiment (OPECE) from March to April 2018. The measurements include volatile organic compounds (VOCs), peroxyacyl nitrates (PANs), ozone (O3), particulate species, nitrogen oxides (NOx), and SO2. Observed VOC mixing ratios were comparable to those measured in heavily polluted cities in the U.S. and China. The VOC source signatures suggest a strong influence from Oil and Natural Gas (O&NG) emissions with potentially large contributions from Liquified Petroleum Gas (LPG) sources as well. Consistently elevated concentrations of O3, PAN, and its rarely measured homologs peroxybenzoylic nitric anhydride (PBzN) and peroxyacrylic nitric anhydride (APAN) at the OPECE site indicate complex photochemistry in a heterogeneous VOC environment. Diagnostic 0‐D box model simulations are used to investigate the budgets of ROx(OH + HO2 + RO2), and the rate and efficiency of O3production. Model sensitivity calculations indicate that O3production at OPECE site is VOC limited in spring. This suggests that reduction in VOCs should be a priority for reducing O3, where production and fugitive emissions from O&NG provide an attractive target. While initial reductions in NOxmight increase O3production, reduction of NOxalong with VOCs will be a necessary step to achieve long‐term ozone reduction. 
    more » « less
  3. In recent years, air pollution has caused more than 1 million deaths per year in China, making it a major focus of public health efforts. However, future climate change may exacerbate such human health impacts by increasing the frequency and duration of weather conditions that enhance air pollution exposure. Here, we use a combination of climate, air quality, and epidemiological models to assess future air pollution deaths in a changing climate under Representative Concentration Pathway 4.5 (RCP4.5). We find that, assuming pollution emissions and population are held constant at current levels, climate change would adversely affect future air quality for >85% of China’s population (∼55% of land area) by the middle of the century, and would increase by 3% and 4% the population-weighted average concentrations of fine particulate matter (PM2.5) and ozone, respectively. As a result, we estimate an additional 12,100 and 8,900 Chinese (95% confidence interval: 10,300 to 13,800 and 2,300 to 14,700, respectively) will die per year from PM2.5 and ozone exposure, respectively. The important underlying climate mechanisms are changes in extreme conditions such as atmospheric stagnation and heat waves (contributing 39% and 6%, respectively, to the increase in mortality). Additionally, greater vulnerability of China’s aging population will further increase the estimated deaths from PM2.5 and ozone in 2050 by factors of 1 and 3, respectively. Our results indicate that climate change and more intense extremes are likely to increase the risk of severe pollution events in China. Managing air quality in China in a changing climate will thus become more challenging. 
    more » « less
  4. Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales. 
    more » « less
  5. Russell, Lynn M (Ed.)
    Abstract. Organic acids represent an important class of compounds in the atmosphere, but there is limited research investigating their chemical production, particularly in the northeast United States. To improve our understanding of organic acid sources, a modeling analysis was performed for air masses reaching the summit of Whiteface Mountain (WFM), New York, where measurements of organic acids in cloud water have been collected. The analysis focuses on a pollution event associated with a heat wave that occurred on 1–2 July 2018 that exhibited unusually high concentrations of formic (HCOOH), acetic (CH3COOH), and oxalic (OxAc) acid in cloud water. The gas-phase production of organic acids for this pollution event was modeled using a combination of the regional transport model Weather Research and Forecasting Model with Chemistry (WRF-Chem), which gives information on transport and environmental factors affecting air parcels reaching WFM, and the Lagrangian chemical box model BOXMOX, which allows analysis of chemistry with different chemical mechanisms. Two chemical mechanisms are used in BOXMOX: (1) the Model for Ozone and Related chemical Tracers (MOZART T1) and (2) the Master Chemical Mechanism (MCM) version 3.3.1. The WRF-Chem results show that air parcels sampled during the pollution event at WFM originated in central Missouri, which has strong biogenic emissions of isoprene. Many air parcels were influenced by emissions of nitrogen oxides (NOx) from the Chicago metropolitan area. The gas-phase oxidation of isoprene and its related oxidation products was the major source of HCOOH and CH3COOH, but both mechanisms substantially underproduced both acids compared to observations. A simple gas–aqueous mechanism was included to investigate the role of aqueous chemistry in organic acid production. Aqueous chemistry did not produce more HCOOH or CH3COOH, suggesting missing chemical sources of both acids. However this aqueous chemistry was able to explain the elevated concentrations of OxAc. Anthropogenic NOx emissions from Chicago had little overall impact on the production of all three organic acids. Further studies are required to better constrain gas and aqueous production of low-molecular-weight organic acids. 
    more » « less