skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Selective, cofactor-mediated catalytic oxidation of alkanethiols in a self-assembled cage host
A spacious Fe( ii )-iminopyridine self-assembled cage complex can catalyze the oxidative dimerization of alkanethiols, with air as stoichiometric oxidant. The reaction is aided by selective molecular recognition of the reactants, and the active catalyst is derived from the Fe( ii ) centers that provide the structural vertices of the host. The host is even capable of size-selective oxidation and can discriminate between alkanethiols of identical reactivity, based solely on size.  more » « less
Award ID(s):
2002619 1708019
NSF-PAR ID:
10284044
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
91
ISSN:
1359-7345
Page Range / eLocation ID:
14263 to 14266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An endohedrally functionalized self‐assembled Fe4L6cage complex can catalyze oxa‐Pictet—Spengler cyclizations of tryptophols and various aldehyde derivatives, showing strong rate accelerations and size‐selectivity. Selective molecular recognition of substrates controls the reactivity, and the cage is capable of binding and activating multiple different species along the multistep reaction pathway. The combination of a functionalized active site, size‐selective reactivity, and multistep activation, all from a single host molecule, illustrates the biomimetic nature of the catalysis.

     
    more » « less
  2. Abstract

    An endohedrally functionalized self‐assembled Fe4L6cage complex can catalyze oxa‐Pictet—Spengler cyclizations of tryptophols and various aldehyde derivatives, showing strong rate accelerations and size‐selectivity. Selective molecular recognition of substrates controls the reactivity, and the cage is capable of binding and activating multiple different species along the multistep reaction pathway. The combination of a functionalized active site, size‐selective reactivity, and multistep activation, all from a single host molecule, illustrates the biomimetic nature of the catalysis.

     
    more » « less
  3. New chelating bis(alkoxide) ligand H 2 [OO] Ph and its iron( ii ) complex Fe[OO] Ph (THF) 2 are described. The coordination of the ligand to the metal center is reminiscent of the coordination of two monodentate alkoxides in previously reported Fe(OR) 2 (THF) 2 species. Fe[OO] Ph (THF) 2 catalyzes selective and efficient dimerization of non-bulky aryl nitrenes to yield the corresponding azoarenes. 
    more » « less
  4. Abstract

    We present multiwavelength time-series spectroscopy of SN 2013aa and SN 2017cbv, two Type Ia supernovae (SNe Ia) on the outskirts of the same host galaxy, NGC 5643. This work utilizes new nebular-phase near-infrared (NIR) spectra obtained by the Carnegie Supernova Project-II, in addition to previously published optical and NIR spectra. Using nebular-phase [Feii] lines in the optical and NIR, we examine the explosion kinematics and test the efficacy of several common emission-line-fitting techniques. The NIR [Feii] 1.644μm line provides the most robust velocity measurements against variations due to the choice of the fit method and line blending. The resulting effects on velocity measurements due to choosing different fit methods, initial fit parameters, continuum and line profile functions, and fit region boundaries were also investigated. The NIR [Feii] velocities yield the same radial shift direction as velocities measured using the optical [Feii]λ7155 line, but the sizes of the shifts are consistently and substantially lower, pointing to a potential issue in optical studies. The NIR [Feii] 1.644μm emission profile shows a lack of significant asymmetry in both SNe, and the observed low velocities elevate the importance for correcting for any velocity contribution from the host galaxy’s rotation. The low [Feii] velocities measured in the NIR at nebular phases disfavor progenitor scenarios in close double-degenerate systems for both SN 2013aa and SN 2017cbv. The time evolution of the NIR [Feii] 1.644μm line also indicates moderately high progenitor white dwarf central density and potentially high magnetic fields.

     
    more » « less
  5. null (Ed.)
    The toxic effects of herbicides are often incompletely selective and can harm crops. Safeners are “inert” ingredients commonly added to herbicide formulations to protect crops from herbicide-induced injury. Dichloroacetamide safeners have been previously shown to undergo reductive dechlorination in anaerobic abiotic systems containing an iron (hydr)oxide mineral (goethite or hematite) amended with Fe( ii ). Manganese oxides ( e.g. , birnessite) are important redox-active species that frequently co-occur with iron (hydr)oxides, yet studies examining the effects of more than one mineral on transformations of environmental contaminants are rare. Herein, we investigate the reactivity of dichloroacetamide safeners benoxacor, furilazole, and dichlormid in binary-mineral, anaerobic systems containing Fe( ii )-amended hematite and birnessite. As the molar ratio of Fe( ii )-to-Mn( iv ) oxide increased, the transformation rate of benoxacor and furilazole increased. The safener dichlormid did not transform appreciably over the sampling period (6 hours). The concentration of pH buffer ([MOPS] = 10–50 mM), ionic strength ([NaCl] = 10–200 mM), and order of solute addition ( e.g. , safener followed by Fe( ii ) or vice versa ) do not appreciably affect transformation rates of the examined dichloroacetamide safeners in Fe( ii ) + hematite slurries. The presence of agrochemical co-formulants, including the herbicide S -metolachlor and three surfactants, in solutions containing Cr(H 2 O) 6 2+ (as a model homogeneous reductant) also did not substantially influence rates of safener transformation. This study is among the first to examine laboratory systems of intermediate complexity ( e.g. , systems containing mixtures of agrochemical co-formulants or mineral phases) when assessing the environmental fate of emerging contaminants such as dichloroacetamide safeners. 
    more » « less