Banded iron formations (BIF) are chemically precipitated sediments that can record Archean ocean geochemistry. BIFs are laminated silica- and iron-rich deposits that host a range of iron(II, III) minerals, including hematite, magnetite, siderite, greenalite, minnesotaite, and stilpnomelane. This diverse mineralogical assemblage reflects secondary mineralization reactions due to diagenesis and/or post-depositional alteration. While petrographic observations of BIFs sparingly contain the iron silicate greenalite, recent evidence of greenalite nanoparticles preserved in early-mineralizing BIF chert suggest this mineral was a primary phase in BIF progenitor sediments. Therefore, it is critical to investigate the formation and alteration of greenalite to constrain the Archean ocean environment and help unravel post-depositional processes. To examine how iron silicates precipitate and then crystallize and/or transform during diagenesis, we simulated these two processes under Archean ocean conditions. We first precipitated a poorly ordered Fe-rich serpentine with subsidiary ferrihydrite at neutral pH by performing in situ Fe(II) oxidation experiments at 25 °C in the presence of silica. Subjected to simulated diagenesis at 80 °C, the rudimentary Fe-phyllosilicate transformed into a crystalline phyllosilicate characterized as 30% cronstedtite and 70% greenalite accompanied by magnetite and persistent ferrihydrite. At temperatures ≤150 °C, we continued to observe ferrihydrite, increased magnetite formation, and elevated incorporation of Mg into the phyllosilicate as it further recrystallized into Mg-greenalite. Our findings demonstrate a possible formation mechanism of early silicates through partial Fe(II) oxidation and support petrographic observations that magnetite likely mineralizes during diagenesis. Additionally, we suggest that Mg contents in BIF iron phyllosilicates could serve as a tracer for diagenesis, with Mg signaling phyllosilicate-fluid interactions at elevated temperatures. Ultimately, our experiments help reveal how initial iron-silica coprecipitates are altered during diagenesis, providing novel insights into the interpretation of greenalite and magnetite in ancient BIF assemblages.
more »
« less
Red-green-bleached redox interfaces in the proximal Permian Cutler red beds: implications for regional fluid alteration
Siliciclastic strata of the Colorado Plateau attract attention for their striking red, green, bleached, and variegated colors that potentially record both early depositional and later diagenetic events. We investigated the proximal-most strata of the Paradox Basin, from their onlap contact with the Precambrian basement of the Uncompahgre Plateau to the younger Cutler strata exposed within 10 km of the Uncompahgre Plateau to attempt to understand the significance of the striking colors that occur here. These strata preserve a complex geology associated with buried paleorelief and sediment-related permeability variations at a major basin-uplift interface. Strata exposed within ∼1.5 km of the onlap contact exhibit a pervasive drab color in contrast to the generally red colors that predominate farther from this front. In-between, strata commonly host variegated red/green/bleached intercalations. Thin-section petrography, SEM, XRD, Raman spectroscopy, Mössbauer spectroscopy, and whole-rock geochemistry of samples representing different color variations from demonstrate that water–rock interactions charged the rocks with Fe(II) that persists primarily in the phyllosilicate fraction. Color variations reflect grain-size differences that allowed the reduction of fluids from regional fault and basement/fill contacts to permeate coarser-grained Cutler sediments. Hematite and chlorite occur in both red and green sediments but are absent in the bleached sediments. Pervasive hematite in both red and green layers suggests that sediments were hematite-rich before later alteration. Chlorite and smectite are elevated in green samples and inversely correlated with biotite content. Green coloration is generally associated with 1) coarser grain sizes, 2) spatial association with basement contacts, 3) elevated smectite and/or chlorite, 4) less total Fe but greater Fe(II)/Fe(III) primarily in the phyllosilicate fraction, and 5) uranium enrichment. The bleached coloration reflects the removal of pigmentary Fe(III) oxide, while the green coloration is due to the removal of pigmentary hematite and the abundance of Fe(II)-bearing phyllosilicates. Abundant mixed-layer and swelling clays such as smectite, illite/smectite, and chlorite/smectite (including tosudite) dominate the mineralogy of the clay fraction. These results are consistent with other studies demonstrating fault-associated fluid alteration in the Paradox Basin region. However, the pervasive greening was not observed in many of these studies and appears to reflect the unique aspects of the paleovalley system and the importance of biotite alteration to Fe(II)-bearing phyllosilicates.
more »
« less
- Award ID(s):
- 1849623
- PAR ID:
- 10561156
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Earth Science
- Volume:
- 11
- ISSN:
- 2296-6463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)International Ocean Discovery Program Expedition 369 recovered a volcanic sequence (Lithostratigraphic Unit VI) at Site U1513 on the eastern Naturaliste Plateau, offshore southwest Australia. We report here the mineralogical composition of the 82.2 m thick volcanic sequence cored in Holes U1513D (24 samples) and U1513E (20 samples) based on X-ray diffraction analysis. The primary minerals preserved in basalt flows and dolerite dikes are plagioclase feldspar and pyroxene, whereas the original olivines have been mostly transformed into secondary phases. Increasing alteration intensity is accompanied by higher amounts of clay minerals (chlorite, kaolinite, interstratified smectite-chlorite, and smectite), iron oxides (magnetite, hematite, and goethite), and likely other secondary minerals associated with serpentinization and sericitization processes. The fine-grained matrix of the volcaniclastic beds contains abundant clay minerals (mainly kaolinite) accompanied by intense hematization.more » « less
-
null (Ed.)Inputs to the Hikurangi subduction zone, offshore North Island, New Zealand, include volcaniclastic conglomerates that were deposited during the Late Cretaceous on the flanks of the subducting basement of Hikurangi Plateau. The overlying succession of pelagic carbonates is early Paleocene to early Pleistocene in age and ranges in composition from calcareous mudstone to muddy chalk and chalk. A thick wedge of Quaternary trench sediments occupies the top of the stratigraphic succession. International Ocean Discovery Program Expedition 375 cored those subduction inputs at two sites. Site U1520 is located on the distal edge of the trench, and Site U1526 is located near the crest of Tūranganui Knoll, where a highly condensed section of pelagic-hemipelagic sediment covers the basalt basement. This report provides the results of 128 X-ray diffraction analyses of the clay-sized fraction (<2 µm spherical settling equivalent), where smectite + illite + undifferentiated (chlorite + kaolinite) + quartz = 100%. Clay minerals in the altered volcaniclastic conglomerates and basalt consist almost exclusively of smectite. At Site U1520, the normalized abundance of smectite in overlying biocalcareous sediments ranges from 28.3 to 72.9 wt% (mean = 54.2 wt%), whereas the abundance of illite ranges from 16.1 to 49.0 wt% (mean = 32.0 wt%). The range for undifferentiated chlorite + kaolinite is 0.3–17.8 wt% (mean = 7.4 wt%), and the range for clay-sized quartz is 2.7–20.5 wt% (mean = 6.4 wt%). Upsection depletion of smectite in those sediments is balanced by upsection enrichment of illite. That same age-dependent trend is evident in coeval biocalcareous drift sediments from Ocean Drilling Program Sites 1123 (North Chatham drift) and 1124 (Rekohu drift). Moving downsection at Site U1520, indicators of clay diagenesis are inconsistent. Values of illite crystallinity index increase (i.e., peak broadening), whereas the proportion of illite within illite/smectite mixed-layer clays increases with depth.more » « less
-
Hematite is the most abundant surficial iron oxide on Earth resulting from near-surface processes that make it important for addressing numerous geologic problems. While red beds have proved to be excellent paleomagnetic recorders, the early diagenetic origin of hematite in these units is often questioned. Here, we validate pigmentary hematite (“pigmentite”) as a proxy indicator for the Late Triassic environment and its penecontemporaneous origin by analyzing spectrophotometric measurements of a 14.5-My–long red bed sequence in scientific drill core CPCP-PFNP13-1A of the Chinle Formation, Arizona. Pigmentite concentrations in the red beds track the evolving pattern of the Late Triassic monsoon and indicate a long-term rise in aridity beginning at ∼215 Ma followed by increased oscillatory climate change at ∼213 Ma. These monsoonal changes are attributed to the northward drift of the Colorado Plateau as part of Laurentia into the arid subtropics during a time of fluctuating CO2. Our results refine the record of the Late Triassic monsoon and indicate significant changes in rainfall proximal to the Adamanian–Revueltian biotic transition that thus may have contributed to apparent faunal and floral events at 216 to 213 Ma.more » « less
-
null (Ed.)This report provides a reconnaissance-scale assessment of bulk mineralogy and clay mineral assemblages in sediments and sedimentary rocks that are entering the Hikurangi subduction zone, offshore North Island, New Zealand. Samples were obtained from three sites drilled during Leg 181 of the Ocean Drilling Program (Sites 1123, 1124, and 1125) and 38 piston/gravity cores that are distributed across the strike-length of the margin. Results from bulk-powder X-ray diffraction show large variations in normalized abundances of total clay minerals and calcite. The typical lithologies range from clay-rich hemipelagic mud (i.e., mixtures of terrigenous silt and clay with lesser amounts of biogenic carbonate) to calcareous mud, muddy calcareous ooze, and nearly pure nannofossil ooze. Basement highs (Chatham Rise and Hikurangi Plateau) are dominated by biocalcareous sediment, whereas most deposits in the trench (Hikurangi Trough and Hikurangi Channel) and on the insular trench slope are hemipelagic. Clay mineral assemblages (<2 µm) change markedly as a function of geographic position. Sediment entering the southwest side of the Hikurangi subduction system is enriched in detrital illite (>60 wt%) relative to chlorite, kaolinite, and smectite. Normalized proportions of detrital smectite increase significantly toward the northeast to reach values of 40–55 wt% offshore Hawkes Bay and across the transect area for Expeditions 372 and 375 of the International Ocean Discovery Program.more » « less
An official website of the United States government

