skip to main content


Title: Efficient Semi-Automatic Workflows for Segmenting the Lung Lobes and Lesions in CT Images of COVID-19 Patients: Application to Full Inspiration and Full Expiration
Award ID(s):
2034964
NSF-PAR ID:
10284060
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
BMES Annual Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Communication between human and mobile agents is getting increasingly important as such agents are widely deployed in our daily lives. Vision-and-Dialogue Navigation is one of the tasks that evaluate the agent’s ability to interact with humans for assistance and navigate based on natural language responses. In this paper, we explore the Navigation from Dialogue History (NDH) task, which is based on the Cooperative Vision-and-Dialogue Navigation (CVDN) dataset, and present a state-of-the-art model which is built upon Vision-Language transformers. However, despite achieving competitive performance, we find that the agent in the NDH task is not evaluated appropriately by the primary metric – Goal Progress. By analyzing the performance mismatch between Goal Progress and other metrics (e.g., normalized Dynamic Time Warping) from our state-of-the-art model, we show that NDH’s sub-path based task setup (i.e., navigating partial trajectory based on its correspondent subset of the full dialogue) does not provide the agent with enough supervision signal towards the goal region. Therefore, we propose a new task setup called NDH-Full which takes the full dialogue and the whole navigation path as one instance. We present a strong baseline model and show initial results on this new task. We further describe several approaches that we try, in order to improve the model performance (based on curriculum learning, pre-training, and data-augmentation), suggesting potential useful training methods on this new NDH-Full task. 
    more » « less
  2. Quantum dots (QDs) offer several advantages in optoelectronics such as easy solution processing, strong light absorption and size tunable direct bandgap. However, their major limitation is their poor film mobility and short diffusion length (<250 nm). This has restricted the thickness of QD film to ∼200–300 nm due to the restriction that the diffusion length imposes on film thickness in order to keep efficient charge collection. Such thin films result in a significant decrease in quantum efficiency for λ > 700 nm in QDs photodetector and photovoltaic devices, causing a reduced photoresponsivity and a poor absorption towards the near-infrared part of the sunlight spectrum. Herein, we demonstrate 1 μm thick QDs photodetectors with intercalated graphene charge collectors that avoid the significant drop of quantum efficiency towards λ > 700 nm observed in most QD optoelectronic devices. The 1 μm thick intercalated QD films ensure strong light absorption while keeping efficient charge extraction with a quantum efficiency of 90%–70% from λ = 600 nm to 950 nm using intercalated graphene layers as charge collectors with interspacing distance of 100 nm. We demonstrate that the effect of graphene on light absorption is minimal. We achieve a time-modulation response of <1 s. We demonstrate that this technology can be implemented on flexible PET substrates, showing 70% of the original performance after 1000 times bending test. This system provides a novel approach towards high-performance photodetection and high conversion photovoltaic efficiency with quantum dots and on flexible substrates. 
    more » « less
  3. This paper provides an overview of the activities of a US National Science Foundation (NSF) funded project Full-Culm Bamboo as a Full-Fledged Engineering Material (Project Numbers NSF CMMI 1634739 and 1634828). The project, funded in 2017, is a collaboration between teams at the Universities of Pittsburgh and Puerto Rico Mayaguez. 
    more » « less